Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Medicina (B.Aires) ; 72(2): 150-157, abr. 2012. tab
Article in Spanish | LILACS | ID: lil-639669

ABSTRACT

La altura constituye un fascinante laboratorio natural para la investigación médica. Si bien al principio el objetivo de la investigación en la altura fue la comprensión de los mecanismos de adaptación del organismo a la hipoxia y la búsqueda de tratamientos para las enfermedades relacionadas con la altura, durante la última década el alcance de esta investigación se ha ampliado considerablemente. Dos importantes observaciones han generado las bases para el crecimiento del alcance científico de la investigación en la altura. Primero, el hecho de que el edema pulmonar agudo de la altura constituye un modelo único para estudiar los mecanismos fundamentales de la hipertensión pulmonar y el edema pulmonar en humanos. Segundo, que la hipoxia ambiental asociada con la exposición a la altura facilita la detección de disfunción vascular pulmonar y sistémica en un estadio precoz. Aquí revisaremos los estudios que, capitalizando estas observaciones, han llevado a la descripción de nuevos mecanismos subyacentes del edema pulmonar y de la hipertensión pulmonar, y a la primera demostración directa de la existencia de una programación fetal sobre la disfunción vascular en humanos.


High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.


Subject(s)
Humans , Altitude Sickness/physiopathology , Endothelium, Vascular/embryology , Endothelium, Vascular/physiopathology , Hypertension, Pulmonary/physiopathology , Pulmonary Edema/physiopathology , Altitude Sickness/complications , Altitude Sickness/embryology , Fetal Development , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/embryology , Nitric Oxide/biosynthesis , Nitric Oxide/deficiency , Oxidative Stress , Pulmonary Edema/embryology , Pulmonary Edema/etiology
2.
Medicina (B.Aires) ; 67(1): 71-81, jan.-fev. 2007. ilus, graf, tab
Article in Spanish | LILACS | ID: lil-464750

ABSTRACT

La altura, fascinante laboratorio natural de investigación médica, provee resultados con importantes implicancias para la comprensión de enfermedades que afectan a millones de personas que viven en ella, asi como para el tratamiento de enfermedades ligadas a la hipoxemia en pacientes que viven en baja altitud. El edema pulmonar de altura (EPA) es una entidad que pone en peligro la vida y que ocurre en sujetos predispuestos pero sanos. Esto permite estudiar los mecanismos subyacentes del edema pulmonar en humanos, sin la presencia de factores que presten a la confusión como enfermedades concomitantes. El EPA resulta de la conjunción de dos defectos mayores: acumulación de líquido en el espacio alveolar debido a una hipertensión pulmonar hipóxica exagerada, y alteración en la eliminación del mismo por un defecto en el transporte transepitelial alveolar de sodio. En esta revisión, describimos brevemente las características clínicas y revisaremos este novedoso concepto. Proveemos evidencia experimental de como la síntesis alterada de óxido nítrico y/o la disminución de su biodisponibilidad representan el defecto central que predispone a la vasoconstricción pulmonar hipóxica exagerada y a la acumulación de líquido en el espacio alveolar. Mostramos que la hipertensión pulmonar hipóxica exagerada, per se, no es suficiente para producir un EPA, y que una alteración en la eliminación del fluido del espacio alveolar representa un segundo mecanismo fisiopatológico importante. Finalmente, describimos cómo los nuevos aportes obtenidos de los estudios del EPA pueden ser trasladados al manejo de otros estados patológicos ligados a la hipoxemia.


High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.


Subject(s)
Humans , Altitude Sickness/physiopathology , Hypertension, Pulmonary/complications , Pulmonary Circulation , Pulmonary Edema/etiology , Sympathetic Nervous System , Altitude Sickness/complications , Altitude Sickness/drug therapy , Biological Availability , Biological Transport/physiology , Blood Pressure/drug effects , Blood Pressure/physiology , Epithelial Sodium Channels/physiology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Nitric Oxide/biosynthesis , Nitric Oxide/pharmacokinetics , Pulmonary Alveoli/drug effects , Pulmonary Circulation/physiology , Pulmonary Edema/drug therapy , Pulmonary Edema/physiopathology , Sodium/pharmacokinetics , Sodium/therapeutic use , Sympathetic Nervous System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL