Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 349-356, 2019.
Article in English | WPRIM | ID: wpr-763029

ABSTRACT

Behavioral analysis in mice provided important contributions in helping understand and treat numerous neurobehavioral and neuropsychiatric disorders. The behavioral performance of animals and humans is widely different among individuals but the neurobehavioral mechanism of the innate difference is seldom investigated. Many neurologic conditions share comorbid symptoms that may have common pathophysiology and therapeutic strategy. The forced swim test (FST) has been commonly used to evaluate the “antidepressant” properties of drugs yet the individual difference analysis of this test was left scantly investigated along with the possible connection among other behavioral domains. This study conducted an FST-screening in outbred CD-1 male mice and segregated them into three groups: high performers (HP) or the active swimmers, middle performers (MP), and low performers (LP) or floaters. After which, a series of behavioral experiments were performed to measure their behavioral responses in the open field, elevated plus maze, Y maze, three-chamber social assay, novel object recognition, delay discounting task, and cliff avoidance reaction. The behavioral tests battery revealed that the three groups displayed seemingly correlated differences in locomotor activity and novel object recognition but not in other behaviors. This study suggests that the HP group in FST has higher locomotor activity and novelty-seeking tendencies compared to the other groups. These results may have important implications in creating behavior database in animal models that could be used for predicting interconnections of various behavioral domains, which eventually helps to understand the neurobiological mechanism controlling the behaviors in individual subjects.


Subject(s)
Animals , Humans , Male , Mice , Behavior Rating Scale , Delay Discounting , Individuality , Models, Animal , Motor Activity
2.
Biomolecules & Therapeutics ; : 374-382, 2017.
Article in English | WPRIM | ID: wpr-129208

ABSTRACT

Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.


Subject(s)
Animals , Female , Humans , Male , Mice , Anxiety , Autism Spectrum Disorder , Brain , Mice, Transgenic , Models, Animal , N-Methylaspartate , Phenotype , Prefrontal Cortex , Receptors, AMPA , Sex Characteristics , Synapses , Telomerase
3.
Biomolecules & Therapeutics ; : 374-382, 2017.
Article in English | WPRIM | ID: wpr-129193

ABSTRACT

Autism spectrum disorder (ASD) remains unexplained and untreated despite the high attention of research in recent years. Aside from its various characteristics is the baffling male preponderance over the female population. Using a validated animal model of ASD which is the telomerase reverse transcriptase overexpressing mice (TERT-tg), we conducted ASD-related behavioral assessments and protein expression experiments to mark the difference between male and females of this animal model. After statistically analyzing the results, we found significant effects of TERT overexpression in sociability, social novelty preference, anxiety, nest building, and electroseizure threshold in the males but not their female littermates. Along these differences are the male-specific increased expressions of postsynaptic proteins which are the NMDA and AMPA receptors in the prefrontal cortex. The vGluT1 presynaptic proteins, but not GAD, were upregulated in both sexes of TERT-tg mice, although it is more significantly pronounced in the male group. Here, we confirmed that the behavioral effect of TERT overexpression in mice was male-specific, suggesting that the aberration of this gene and its downstream pathways preferentially affect the functional development of the male brain, consistent with the male preponderance in ASD.


Subject(s)
Animals , Female , Humans , Male , Mice , Anxiety , Autism Spectrum Disorder , Brain , Mice, Transgenic , Models, Animal , N-Methylaspartate , Phenotype , Prefrontal Cortex , Receptors, AMPA , Sex Characteristics , Synapses , Telomerase
SELECTION OF CITATIONS
SEARCH DETAIL