Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Journal of Veterinary Science ; : 87-90, 2019.
Article in English | WPRIM | ID: wpr-758879

ABSTRACT

Sequence type (ST) 33 of Shiga toxin-producing Escherichia coli (STEC) strain O91:H14 has been proposed as a potential domestic clone of STEC in Korea because of its high prevalence among human patients with mild diarrhea or asymptomatic carriers. Herein, the clonal diversity of 17 STEC O91:H14 isolates of ST33 during 2003 to 2014 was analyzed by pulsed-field gel electrophoresis, including 14 isolates from human patients and 3 from retail meats. Their virulence characteristics, acid resistance, and antimicrobial susceptibility were also determined. Our results showed that all isolates were clustered mainly into three different pulsotypes and were likely low pathogenic without antimicrobial resistance.


Subject(s)
Humans , Clone Cells , Diarrhea , Electrophoresis, Gel, Pulsed-Field , Escherichia coli , Korea , Meat , Molecular Epidemiology , Prevalence , Shiga Toxin , Shiga-Toxigenic Escherichia coli , Virulence
2.
Journal of Veterinary Science ; : 251-259, 2018.
Article in English | WPRIM | ID: wpr-758795

ABSTRACT

Herein, we report the pathogenic and phylogenetic characteristics of seven Shiga toxin (Stx)-producing Escherichia coli (STEC) isolates from 434 retail meats collected in Korea during 2006 to 2012. The experimental analyses revealed that all isolates (i) were identified as non-O157 STEC, including O91:H14 (3 isolates), O121:H10 (2 isolates), O91:H21 (1 isolate), and O18:H20 (1 isolate), (ii) carried diverse Stx subtype genes (stx₁, stx(2c), stx(2e), or stx₁ + stx(2b)) whose expression levels varied strain by strain, and (iii) lacked the locus of enterocyte effacement (LEE) pathogenicity island, a major virulence factor of STEC, but they possessed one or more alternative virulence genes encoding cytotoxins (Cdt and SubAB) and/or adhesins (Saa, Iha, and EcpA). Notably, a significant heterogeneity in glutamate-induced acid resistance was observed among the STEC isolates (p < 0.05). In addition, phylogenetic analyses demonstrated that all three STEC O91:H14 isolates were categorized into sequence type (ST) 33, of which two beef isolates were identical in their pulsotypes. Similar results were observed with two O121:H10 pork isolates (ST641; 88.2% similarity). Interestingly, 96.0% of the 100 human STEC isolates collected in Korea during 2003 to 2014 were serotyped as O91:H14, and the ST33 lineage was confirmed in approximately 72.2% (13/18 isolates) of human STEC O91:H14 isolates from diarrheal patients.


Subject(s)
Humans , Cytotoxins , Enterocytes , Escherichia coli , Genomic Islands , Korea , Meat , Population Characteristics , Red Meat , Shiga Toxin , Shiga-Toxigenic Escherichia coli , Virulence , Virulence Factors
SELECTION OF CITATIONS
SEARCH DETAIL