Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 125-130, 2003.
Article in English | WPRIM | ID: wpr-727912

ABSTRACT

The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n- (9-anthroyloxy) stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16- (9-anthroyloxy) stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.


Subject(s)
Carbon , Chlorhexidine , Fluorescence Polarization , Membrane Fluidity , Membrane Lipids , Membranes , Porphyromonas gingivalis , Porphyromonas , Thiram
2.
The Korean Journal of Physiology and Pharmacology ; : 41-46, 2000.
Article in English | WPRIM | ID: wpr-728340

ABSTRACT

Using fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS), we evaluated the differential effects of local anesthetics on differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total lipid fraction liposome extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were 0.078+/-0.001 and 0.114+/-0.001, respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. In a dose-dependent manner, the local anesthetics decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior but have significant ordering effects on the surface region of the liposome outer monolayer.


Subject(s)
Anesthetics, Local , Anisotropy , Carbon , Cell Membrane , Fluorescence Polarization , Head , Liposomes , Membranes
SELECTION OF CITATIONS
SEARCH DETAIL