Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Asian Pacific Journal of Tropical Medicine ; (12): 223-232, 2022.
Article in Chinese | WPRIM | ID: wpr-941583

ABSTRACT

Objective: To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats. Methods: Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups. The control group was given intragastric (i.g.) saline (1 mL) for 10 d. The acrylamide group was given i.g. acrylamide in saline (38.27 mg/kg titrated to 1 mL) for 10 d. The treatment groups were administered with naringin in saline (50 and 100 mg/kg, respectively) for 10 d and given i.g. acrylamide (38.27 mg/kg) 1 h after naringin injection. The naringin group was given i.g. naringin (100 mg/kg) alone for 10 d. On day 11, intracardiac blood samples were obtained from the rats when they were under anesthesia, after which they were euthanized. Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer. Enzyme-linked immunosorbent assay was used to quantify malondialdehyde, superoxide dismutase, glutathione, glutathione peroxidase, catalase, tumor necrosis factor-β, nuclear factor-κB, interleukin (IL)-33, IL-6, IL-1β, cyclooxygenase-2, kidney injury molecule-1, mitogen-activated protein kinase-1, and caspase-3 in kidney tissues. Renal tissues were also evaluated by histopathological and immunohistochemical examinations for 8-OHdG and Bcl-2. Results: Naringin attenuated acrylamide-induced nephrotoxicity by significantly decreasing serum urea and creatinine levels. Naringin increased superoxide dismutase, glutathione, glutathione peroxidase, and catalase activities and decreased malondialdehyde levels in kidney tissues. In addition, naringin reduced the levels of inflammatory and apoptotic parameters in kidney tissues. The histopathological assay showed that acrylamide caused histopathological changes and DNA damage, which were ameliorated by naringin. Conclusions: Naringin attenuated inflammation, apoptosis, oxidative stress, and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.

2.
Asian Pacific Journal of Tropical Biomedicine ; (12): 223-232, 2022.
Article in Chinese | WPRIM | ID: wpr-950192

ABSTRACT

Objective: To explore the possible effects of naringin on acrylamide-induced nephrotoxicity in rats. Methods: Sprague-Dawley rats weighing 200-250 g were randomly divided into five groups. The control group was given intragastric (i.g.) saline (1 mL) for 10 d. The acrylamide group was given i.g. acrylamide in saline (38.27 mg/kg titrated to 1 mL) for 10 d. The treatment groups were administered with naringin in saline (50 and 100 mg/kg, respectively) for 10 d and given i.g. acrylamide (38.27 mg/kg) 1 h after naringin injection. The naringin group was given i.g. naringin (100 mg/kg) alone for 10 d. On day 11, intracardiac blood samples were obtained from the rats when they were under anesthesia, after which they were euthanized. Urea and creatinine concentrations of blood serum samples were analyzed with an autoanalyzer. Enzyme-linked immunosorbent assay was used to quantify malondialdehyde, superoxide dismutase, glutathione, glutathione peroxidase, catalase, tumor necrosis factor-β, nuclear factor-κB, interleukin (IL)-33, IL-6, IL-1β, cyclooxygenase-2, kidney injury molecule-1, mitogen-activated protein kinase-1, and caspase-3 in kidney tissues. Renal tissues were also evaluated by histopathological and immunohistochemical examinations for 8-OHdG and Bcl-2. Results: Naringin attenuated acrylamide-induced nephrotoxicity by significantly decreasing serum urea and creatinine levels. Naringin increased superoxide dismutase, glutathione, glutathione peroxidase, and catalase activities and decreased malondialdehyde levels in kidney tissues. In addition, naringin reduced the levels of inflammatory and apoptotic parameters in kidney tissues. The histopathological assay showed that acrylamide caused histopathological changes and DNA damage, which were ameliorated by naringin. Conclusions: Naringin attenuated inflammation, apoptosis, oxidative stress, and oxidative DNA damage in acrylamide-induced nephrotoxicity in rats.

3.
Asian Pacific Journal of Tropical Biomedicine ; (12): 116-122, 2019.
Article in Chinese | WPRIM | ID: wpr-950376

ABSTRACT

Objective: To investigate the effects of probiotic bacteria on cisplatin (CP)-induced nephrotoxicity. Methods: In the present study, 50 Sprague-Dawley rats were used and randomly divided into five groups including control, CP, probiotic bacteria treatment groups with different doses (0.5 and 1 mL) and only probiotic bacteria group. After CP and probiotic administration on seven days, rats sacrificed under anesthesia on the eighth day. The serum urea, creatinine, and blood urea nitrogen levels were analyzed. In renal tissue, malondialdehyde levels, superoxide dismutase and glutathione activity, interleukin-8, interleukin-1β and tumor necrosis factor-alpha levels were determined and histopathological and immunohistochemical changes were also examined. Results: According to results, urea, creatinine and blood urea nitrogen levels as well as kidney weights increased in CP group. Also, CP induced inflammation, oxidative stress, DNA damage and apoptosis in kidney tissue and caused histopathological changes. Administration of the high dose of probiotic bacteria could prevent these changes and damages. Conclusions: This study reveals that probiotic bacteria has protective effects on CP-induced renal damage in rats.

4.
Medical Principles and Practice. 2018; 27 (3): 217-221
in English | IMEMR | ID: emr-201903

ABSTRACT

Objectives: Prolidase plays a vital role in collagen turnover, matrix remodeling, and cell growth. We aimed to evaluate the association between treatment with chorionic gonadotropin and infertility and erectile dysfunction by investigating


tissue prolidase activity, oxidative stress, and levels of antioxidant enzymes


Materials and Methods: The 16 male Wistar albino rats used in this study were randomly divided into 2 groups: rats treated with human chorionic gonadotropin [hCG] and control rats [n = 8 in each group]. The rats in the hCG group were subcutaneously injected with 50 IU hCG daily for 15 days, while the rats in the control group were subcutaneously injected isotonic saline. All of the rats were sacrificed by a lethal overdose of sodium pentobarbital at the first month after hCG administration. Prolidase activity and levels of malonyl aldehyde, glutathione reductase, superoxide dismutase [SOD], glutathione peroxidase [GSH-Px], and catalase [CAT] were estimated in the testicular and penile tissue. The testicles and penis were transversely dissected and placed in formalin


Results: Levels of prolidase and malonyl aldehyde in the testicular and penile tissues were significantly higher in the hCG group than in the control group [p < 0.001], while levels of glutathione reductase, SOD, GSH-Px, and CAT were significantly lower in the hCG group than in the control group [p < 0.001]


Conclusions: In this study, we observed that treatment with hCG increased prolidase activity and oxidative stress and decreased the antioxidant capacity of penile and testicular tissues; therefore, this may affect fertility and erectile function

5.
The Korean Journal of Internal Medicine ; : 316-324, 2015.
Article in English | WPRIM | ID: wpr-152281

ABSTRACT

BACKGROUND/AIMS: Poor sleep quality (SQ) is associated with increased cardiovascular mortality and morbidity. Additionally, asymmetric dimethylarginine (ADMA) is an independent predictor of cardiovascular mortality and morbidity. However, no sufficient data regarding the relationship between ADMA levels and SQ have been reported. The goal of the current study was to evaluate the association between SQ and ADMA levels in normotensive patients with type 2 diabetes mellitus. METHODS: The study participants consisted of 78 normotensive type 2 diabetics. The SQ of all participants was assessed using the Pittsburgh Sleep Quality Index (PSQI). Patients with a global PSQI score > 5 were defined as "poor sleepers." Factors associated with poor SQ were analyzed using a multiple regression model. Serum ADMA levels were measured using high performance liquid chromatography. RESULTS: The median ADMA levels of the poor sleepers were increased compared with patients defined as good sleepers (5.5 [4.2 to 6.6] vs. 4.4 [2.9 to 5.4], p < 0.01, respectively). However, the L-arginine/ADMA ratio was decreased in poor sleepers (p < 0.01). Global PSQI scores were positively correlated with ADMA levels (p < 0.01) and negatively correlated with the L-arginine/ADMA ratio (p = 0.02). ADMA levels were correlated with sleep latency (p < 0.01) and sleep efficiency (p = 0.01). Logistic regression analysis showed that ADMA levels (odds ratio [OR], 1.68; 95% confidence interval [CI], 1.16 to 2.44; p = 0.01) and body mass index (OR, 1.15; 95% CI, 1.01 to 1.31; p = 0.04) were associated with poor SQ independently of glomerular filtration rate, sex, age, duration of diabetes, hemoglobin A1c, total cholesterol, and systolic blood pressure. CONCLUSIONS: Self-reported SQ was independently associated with ADMA levels in normotensive patients with diabetes mellitus.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Arginine/analogs & derivatives , Biomarkers/blood , Cardiovascular Diseases/blood , Chi-Square Distribution , Chromatography, High Pressure Liquid , Cross-Sectional Studies , Diabetes Mellitus, Type 2/blood , Logistic Models , Odds Ratio , Risk Factors , Sleep , Sleep Wake Disorders/blood , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL