Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Journal of Veterinary Science ; : e56-2023.
Article in English | WPRIM | ID: wpr-1001922

ABSTRACT

Background@#Cold atmospheric plasma is a novel innovative approach for wound care, and it is currently underrepresented in veterinary medicine. @*Objectives@#To investigate the efficacy and safety of using cold atmospheric microwave plasma (CAMP) as an adjunct therapy for wound healing in dogs and cats. @*Methods@#Wound healing outcomes were retrospectively analyzed using clinical records of client-owned dogs and cats who were first managed through standard wound care alone (pre-CAMP period) and subsequently via CAMP therapy (CAMP period). The degree of wound healing was estimated based on wound size and a modified wound scoring system. @*Results@#Of the 27 acute and chronic wounds included in the analysis, 81.48% showed complete healing after the administration of CAMP as an adjunct therapy to standard care.Most wounds achieved complete healing in < 5 weeks. Compared with the pre-CAMP period, the rate of wound healing significantly increased every week in the CAMP period in terms of in wound size (first week, p < 0.001; second week, p = 0.012; third week, p < 0.001) and wound score (first week, p < 0.001; second week, p < 0.001; third week, p = 0.001). No adverse events were noted except for mild discomfort and transient erythema. @*Conclusions@#CAMP is a well-tolerated therapeutic option with immense potential to support the treatment of wounds of diverse etiology in small animal practice. Further research is warranted to establish specific criteria for CAMP treatment according to wound characteristics.

2.
Experimental Neurobiology ; : 247-258, 2023.
Article in English | WPRIM | ID: wpr-1000337

ABSTRACT

Non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1), also known as growth differentiation factor-15 (GDF-15), is associated with cancer, diabetes, and inflammation, while there is limited understanding of the role of NAG-1 in nociception. Here, we examined the nociceptive behaviors of NAG-1 transgenic (TG) mice and wild-type (WT) littermates. Mechanical sensitivity was evaluated by using the von Frey filament test, and thermal sensitivity was assessed by the hot-plate, Hargreaves, and acetone tests. c-Fos, glial fibrillary acidic protein (GFAP), and ionized calcium binding adaptor molecule-1 (Iba-1) immunoreactivity was examined in the spinal cord following observation of the formalin-induced nociceptive behaviors. There was no difference in mechanical or thermal sensitivity for NAG-1 TG and WT mice. Intraplantar formalin injection induced nociceptive behaviors in both male and female NAG-1 TG and WT mice. The peak period in the second phase was delayed in NAG-1 TG female mice compared with that of WT female mice, while there was no difference in the cumulative time of nociceptive behaviors between the two groups of mice. Formalin increased spinal c-Fos immunoreactivity in both TG and WT female mice. Neither GFAP nor Iba-1 immunoreactivity was increased in the spinal cord of TG and WT female mice. These findings indicate that NAG-1 TG mice have comparable baseline sensitivity to mechanical and thermal stimulation as WT mice and that NAG-1 in female mice may have an inhibitory effect on the second phase of inflammatory pain. Therefore, it could be a novel target to inhibit central nervous system response in pain.

3.
Yonsei Medical Journal ; : 463-469, 2018.
Article in English | WPRIM | ID: wpr-715395

ABSTRACT

Moonlighting proteins exhibit multiple activities in different cellular compartments, and their abnormal regulation could play an important role in many diseases. To date, many proteins have been identified with moonlighting activity, and more such proteins are being gradually identified. Among the proteins that possess moonlighting activity, several secreted proteins exhibit multiple activities in different cellular locations, such as the extracellular matrix, nucleus, and cytoplasm. While acute inflammation starts rapidly and generally disappears in a few days, chronic inflammation can last for months or years. This is generally because of the failure to eliminate the cause of inflammation, along with repeated exposure to the inflammatory agent. Chronic inflammation is now considered as an overwhelming burden to the general wellbeing of patients and noted as an underlying cause of several diseases. Moonlighting proteins can contribute to the process of chronic inflammation; therefore, it is imperative to overview some proteins that exhibit multiple functions in inflammatory diseases. In this review, we will focus on inflammation, particularly unravelling several well-known secreted proteins with multiple functions in different cellular locations.


Subject(s)
Humans , Cytoplasm , Extracellular Matrix , Inflammation
4.
Yonsei Medical Journal ; : 585-596, 2005.
Article in English | WPRIM | ID: wpr-62310

ABSTRACT

There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process.


Subject(s)
Humans , Animals , Phospholipases A/antagonists & inhibitors , Phenols/pharmacology , Peroxisome Proliferator-Activated Receptors/drug effects , NF-kappa B/metabolism , Lipoxygenase Inhibitors/pharmacology , Flavonoids/pharmacology , Cytokines/biosynthesis , Cyclooxygenase Inhibitors/pharmacology , Arachidonic Acid/metabolism , Anti-Inflammatory Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL