Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. arch. biol. technol ; 57(3): 394-401, May-June 2014. ilus, graf
Article in English | LILACS | ID: lil-709376

ABSTRACT

In this work, plant regeneration via somatic embryogenesis was achieved from leaf and internode derived callus of Wedelia calendulacea, an endangered medicinal plant. Primary callus was induced by culturing leaf disc and internode explant on Murashige and Skoog medium supplemented with 2.0 mg L-1 of 2,4-D under light condition. Transfer of embryogenic callus on a reduced concentration of 2,4-D facilitated somatic embryo development while calluses remained unorganized at the same 2,4-D level. A histological analysis confirmed somatic embryo by revealing the presence of a closed vascular system in the developing embryos and lack of a vascularconnection with surrounding callus tissues. Somatic embryos germinated into plantlets upon transfer on MS medium containing 1.0 mg L-1 BAP plus 0.5 mg L-1 GA3. Plantlets were acclimatized successfully and survived under soil condition. This is the first on somatic embryogenesis of W.calendulacea. This result could facilitate genetic transformation of this important medicinal plant.

2.
Braz. arch. biol. technol ; 55(3): 335-340, May-June 2012. ilus, tab
Article in English | LILACS | ID: lil-640182

ABSTRACT

The aim of this work was to develop a protocol for rapid micropropagation of an elite F1 hybrid watermelon cultivar using shoot tip of field-grown plants. Maximum frequency (73%) of shoot tip showed growth response in MS medium supplemented with 5 mg l-1 benzyl adenine (BA) and 0.1 mg l-1 indole-3 acetic acid (IAA). Upon transfer to cytokinin-enriched medium, the cultures produced multiple shoots and 2.0 mg l-1 BA was optimum in this respect. Addition of gibberellic acid (GA3) in the multiplication medium resulted in better growth of shoots. Rooting rate was 100% when shoots were obtained from second subculture were cultured in medium with 1.0 mg l-1 indole-3 butyric acid (IBA). The shoots produced more roots with increasing number of subcultures. About 72% of the regenerated plantlets acclimatized successfully and survived in the soil condition.

3.
J Biosci ; 2010 Mar; 35(1): 49-62
Article in English | IMSEAR | ID: sea-161407

ABSTRACT

To gain better insight into how soybean roots respond to waterlogging stress, we carried out proteomic profi ling combined with physiological analysis at two time points for soybean seedlings in their early vegetative stage. Seedlings at the V2 stage were subjected to 3 and 7 days of waterlogging treatments. Waterlogging stress resulted in a gradual increase of lipid peroxidation and in vivo H2O2 level in roots. Total proteins were extracted from root samples and separated by two-dimensional gel electrophoresis (2-DE). A total of 24 reproducibly resolved, differentially expressed protein spots visualized by Coomassie brilliant blue (CBB) staining were identifi ed by matrix assisted laser desorption ionization time-of-fl ight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. Of these, 14 proteins were upregulated; 5 proteins were decreased; and 5 were newly induced in waterlogged roots. The identifi ed proteins include well-known classical anaerobically induced proteins as well as novel waterlogging-responsive proteins that were not known previously as being waterlogging responsive. The novel proteins are involved in several processes, i.e. signal transduction, programmed cell death, RNA processing, redox homeostasis and metabolisms of energy. An increase in abundance of several typical anaerobically induced proteins, such as glycolysis and fermentation pathway enzymes, suggests that plants meet energy requirement via the fermentation pathway due to lack of oxygen. Additionally, the impact of waterlogging on the several programmed cell death- and signal transduction-related proteins suggest that they have a role to play during stress. RNA gel blot analysis for three programmed cell death-related genes also revealed a differential mRNA level but did not correlate well with the protein level. These results demonstrate that the soybean plant can cope with waterlogging through the management of carbohydrate consumption and by regulating programmed cell death. The identifi cation of novel proteins such as a translation initiation factor, apyrase, auxin-amidohydrolase and coproporphyrinogen oxidase in response to waterlogging stress may provide new insight into the molecular basis of the waterlogging-stress response of soybean.

SELECTION OF CITATIONS
SEARCH DETAIL