Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
J Biosci ; 2010 Sep; 35(3): 435-450
Article in English | IMSEAR | ID: sea-161470

ABSTRACT

The harpin protein HrpN Ea induces Arabidopsis resistance to the green peach aphid by activating the ethylene signalling pathway and by recruiting EIN2, an essential regulator of ethylene signalling, for a defence response in the plant. We investigated 37 ethylene-inducible Arabidopsis transcription factor genes for their effects on the activation of ethylene signalling and insect defence. Twenty-eight of the 37 genes responded to both ethylene and HrpN Ea , and showed either increased or inhibited transcription, while 18 genes showed increased transcription not only by ethylene but also by HrpN Ea . In response to HrpN Ea , transcription levels of 22 genes increased, with AtMYB44 being the most inducible, six genes had decreased transcript levels, and nine remained unchanged. When Arabidopsis mutants previously generated by mutagenicity at the 37 genes were surveyed, 24 mutants were similar to the wild type plant while four mutants were more resistant and nine mutants were more susceptible than wild type to aphid infestation. Aphid-susceptible mutants showed a greater susceptibility for atmyb15, atmyb38 and atmyb44, which were generated previously by T-DNA insertion into the exon region of AtMYB15 and the promoter regions of AtMYB38 and AtMYB44. The atmyb44 mutant was the most susceptible to aphid infestation and most compromised in induced resistance. Resistance accompanied the expression of PDF1.2, an ethylene signalling marker gene that requires EIN2 for transcription in wild type but not in atmyb15, atmyb38, and atmyb44, suggesting a disruption of ethylene signalling in the mutants. However, only atmyb44 incurred an abrogation in induced EIN2 expression, suggesting a close relationship between AtMYB44 and EIN2.

SELECTION OF CITATIONS
SEARCH DETAIL