Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 153-157, 2004.
Article in Chinese | WPRIM | ID: wpr-352800

ABSTRACT

This paper was designed in middle cerebral artery occlusion (MCAO) model of rats, to explore the role of transient receptor potential channel 4 (TRPC4) as Ca(2+) selective channel by detecting the changes of the expression of TRPC4 in different parts of cerebral tissues under the condition of focal cerebral ischemia. The rats were sacrificed after MCAO surviving time 6 h, 12 h, 1 d, 3 d. As determined by Western blot, the expressions of TRPC4 in striatum and hippocampus of 12 h, 1 d, 3 d groups were significant higher than that in the control group (P<0.05). Immunohistochemical staining showed that the TRPC4 immunoreactive substances were present in the membrane of neurons. Compared with the control group, immunostaining positive cells increased in hippocampus and striatum of cerebral ischemia groups. The TRPC4 immunostaining positive cells increased significantly in 1d-group and 3d-group (P<0.05). It suggests that as a Ca(2+) selective channel, the variance of the expression of TRPC4 may play a role in acute and delayed neuronal injury in focal cerebral ischemia.


Subject(s)
Animals , Male , Rats , Cation Transport Proteins , Genetics , Corpus Striatum , Metabolism , Hippocampus , Metabolism , Infarction, Middle Cerebral Artery , Metabolism , Ion Channels , Genetics , Random Allocation , Rats, Sprague-Dawley , Reperfusion Injury , Metabolism , TRPV Cation Channels
2.
Acta Physiologica Sinica ; (6): 294-299, 2002.
Article in Chinese | WPRIM | ID: wpr-279295

ABSTRACT

Immunohistochemistry and double immunofluorescent labeling techniques combined with confocal laser scanning microscope analysis were used to investigate the characteristic spatial induction profile of nestin following a transient middle cerebral artery occlusion in adult rat brain. The results showed that nestin was induced in ischemic core at 1 day after reperfusion. In addition to ischemic core, the expression of nestin increased in peri-ischemic I, II and III regions at 3 days and 1 week, then it decreased and narrowed along the rim of ischemic core 2 weeks after reperfusion. Double immunofluorescent labeling showed that nestin positive cells were mostly co-stained with GFAP,a astrocyte marker, in peri-ischemic I region 3 days after reperfusion. At 2 weeks, however nestin cells showed a long process and the cells double stained with nestin and NSE,a neuonal specific marker,increased in the ischemic brain. The results suggest that cerebral ischemia induces nestin expression in damaged neurons which might favor the neuroprotection against ischemic damage.


Subject(s)
Animals , Rats , Brain , Metabolism , Pathology , Brain Ischemia , Metabolism , Pathology , Immunohistochemistry , Infarction, Middle Cerebral Artery , Metabolism , Pathology , Nestin , Metabolism , Neurons , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL