Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
International Journal of Biomedical Engineering ; (6): 331-335, 2011.
Article in Chinese | WPRIM | ID: wpr-417555

ABSTRACT

Objective To explore mechanical property changes of methyl vinyl silicone rubber modified by ferric nanoparticles and its dispersed phase.Methods Mechanical properties such as Shore A hardness,tensile strength,elongation at break,tearing rate of permanent deformation and tearing strength of pre-prepared ironic nanoparticle enhanced silicone rubber and carbon-coated ferric particle reinforced silicone rubber were tested according to national standards.A thermal field emission scanning electron microscope (TFE-SEM) was used to investigate the morphology of both surface and fracture of the composite materials and to observe the dispersion of ferric nanoparticles in them.Results Mean values of Shore A hardness,tensile strength,elongation at break,tearing permanent deformation rate and tear strength of modified composites increased with the increasing amounts of ferric nanoparticles,however,when the quota of ironic nanoparticles in the composite formula were greater than 17 phr,carbon-coated ferric nanoparticles more than 19 phr,the mean values of tensile strength of two composites stopped increasing and presented the declining trend.When the quota of ferric nanoparticles in the formula exceeding 15 phr,the mean values of elongation at break and tear strength began to decrease in the formula ratio of silicone rubber/ferric nanoparticles up to 85:15,while the Shore A hardness of samples increased all the way.Ferric nanoparticles dispersed evenly on the surface of composites.Nanopowder aggregation in the fracture surface of both composites could be observed at the formula ratio of 85:15 of silicone rubber/iron nanoparticle and 87:13 of silicone rubber/carbon-coated iron specimen.Conclusion Effect of iron nanapareticles and carbon-coated ferric nanoparticles on the mechanical properties of the reinforced methyl vinyl silicone rubber depends on the nanoparticle size,additive amount and agglomeration.

SELECTION OF CITATIONS
SEARCH DETAIL