Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Year range
1.
Frontiers of Medicine ; (4): 339-351, 2023.
Article in English | WPRIM | ID: wpr-982565

ABSTRACT

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Subject(s)
Mice , Animals , Butyric Acid/metabolism , Ketone Bodies/metabolism , Liver/metabolism , Hydroxybutyrates/metabolism , Down-Regulation , Sirtuins/metabolism , Hydroxymethylglutaryl-CoA Synthase/metabolism
2.
Acta Pharmaceutica Sinica B ; (6): 1186-1197, 2022.
Article in English | WPRIM | ID: wpr-929360

ABSTRACT

The transcription factor nuclear factor of kappa-light-chain-enhancer of activated B cells (NF-κB) is expressed in brown adipocytes, but its role remains largely unknown in the cells. This issue was addressed in current study by examining NF-κB in brown adipocytes in vitro and in vivo. NF-κB activity was increased by differentiation of brown adipocytes through elevation of p65 (RelA) expression. The transcriptional activity of NF-κB was induced by the cold stimulation with an elevation in S276 phosphorylation of p65 protein. Inactivation of NF-κB in brown adipocytes made the knockout mice [uncoupling protein 1 (Ucp1)-CreER-p65f/f, U-p65-KO] intolerant to the cold environment. The brown adipocytes exhibited an increase in apoptosis, a decrease in cristae density and uncoupling activity in the interscapular brown adipose tissue (iBAT) of p65-KO mice. The alterations became severer after cold exposure of the KO mice. The brown adipocytes of mice with NF-κB activation (p65 overexpression, p65-OE) exhibited a set of opposite alterations with a reduction in apoptosis, an increase in cristae density and uncoupling activity. In mechanism, NF-κB inhibited expression of the adenine nucleotide translocase 2 (ANT2) in the control of apoptosis. Data suggest that NF-κB activity is increased in brown adipocytes by differentiation and cold stimulation to protect the cells from apoptosis through down-regulation of ANT2 expression.

3.
Endocrinology and Metabolism ; : 290-302, 2022.
Article in English | WPRIM | ID: wpr-924945

ABSTRACT

Background@#Developmental hypothyroidism impairs learning and memory in offspring, which depend on extensive neuronal circuits in the entorhinal cortex, together with the hippocampus and neocortex. The entorhinal-dentate gyrus pathway is the main entrance of memory circuits. We investigated whether developmental hypothyroidism impaired the morphological development of the entorhinal-dentate gyrus pathway. @*Methods@#We examined the structure and function of the entorhinal-dentate gyrus pathway in response to developmental hypothyroidism induced using 2-mercapto-1-methylimidazole. @*Results@#1,1´-Dioctadecyl-3,3,3´,3´-tetramethylindocarbocyanine perchlorate tract tracing indicated that entorhinal axons showed delayed growth in reaching the outer molecular layer of the dentate gyrus at postnatal days 2 and 4 in hypothyroid conditions. The proportion of fibers in the outer molecular layer was significantly smaller in the hypothyroid group than in the euthyroid group at postnatal day 4. At postnatal day 10, the pathway showed a layer-specific distribution in the outer molecular layer, similar to the euthyroid group. However, the projected area of entorhinal axons was smaller in the hypothyroid group than in the euthyroid group. An electrophysiological examination showed that hypothyroidism impaired the long-term potentiation of the perforant and the cornu ammonis 3–cornu ammonis 1 pathways. Many repulsive axon guidance molecules were involved in the formation of the entorhinaldentate gyrus pathway. The hypothyroid group had higher levels of erythropoietin-producing hepatocyte ligand A3 and semaphorin 3A than the euthyroid group. @*Conclusion@#We demonstrated that developmental hypothyroidism might influence the development of the entorhinal-dentate gyrus pathway, contributing to impaired long-term potentiation. These findings improve our understanding of neural mechanisms for memory function.

4.
Chinese Journal of Endocrinology and Metabolism ; (12): 961-965, 2020.
Article in Chinese | WPRIM | ID: wpr-870121

ABSTRACT

This article reported a patient with familial dysalbuminemic hyperthyroxinemia (FDH). A 38-year-old male occasionally found to have increased FT 4 level with normal FT 3 and TSH on routine physical examination was admitted to our hospital. Thyroid function was rechecked and found that the levels of TT 4, FT 4, rT 3 were increased, while TT 3, FT 3, TSH, TRAb, TPOAb and TGAb were normal. The patient had no other symptoms of thyrotoxicosis except occasional diarrhea. Gene sequencing revealed a heterozygous mutation of c. 653G>A (p.R218H) in exon 7 of albumin (ALB) gene, therefore the patient was confirmed as a case of FDH.

SELECTION OF CITATIONS
SEARCH DETAIL