Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1446-1453, 2014.
Article in Chinese | WPRIM | ID: wpr-345580

ABSTRACT

In proteomic research, to improve protein solubility of membrane proteins and nuclear proteins, buffers containing high concentration of detergent, such as 4% SDS, were widely used. However, high concentration of detergent might severely interfere with the downstream proteomic analysis, including protein quantitation and trypsin digestion. To improve the proteomic compatibility of buffers with high concentration of detergent, we used short gel method to pretreat buffers containing detergent. Protein samples were first separated by a short (2-2.5 mm) SDS-PAGE electrophoresis, and proteins were quantitated by comparing with bovine serum albumin standards via optical density analysis. The gel was then cut and peptides were recovered using in-gel digestion. The quantitative linearity range of this method was 1 to 8 μg. The quantitation was accurate and reproducible. After short gel analysis, recovered peptides generated high mass spectrometry signals. In conclusion, short gel method eliminated the interference of high concentration detergent in the proteomics analysis, and it was suitable for protein samples' pretreatment, and was worth to apply in proteomic research.


Subject(s)
Detergents , Chemistry , Electrophoresis, Polyacrylamide Gel , Methods , Mass Spectrometry , Membrane Proteins , Chemistry , Nuclear Proteins , Chemistry , Proteins , Chemistry , Proteomics , Methods , Trypsin
2.
Chinese Journal of Biotechnology ; (12): 1073-1082, 2014.
Article in Chinese | WPRIM | ID: wpr-279446

ABSTRACT

Nowadays, proteomics focuses on quantitative analysis rather than qualitative. In the field of quantitative proteomics, Isobaric tags for relative and absolute quantitation (iTRAQ) is one of the most widely used techniques. The advantage of iTRAQ is high throughput, high stability and free of the restriction of sample property. iTRAQ is suitable for almost all kinds of samples, and up to 8 samples can be analyzed simultaneously by commercially available kit. Along with the development of techniques, more and more mass spectrometry (MS) platforms are used in iTRAQ experiments and the accuracy of iTRAQ has been improved. iTRAQ has been applied to studies of microorganism, animal, plant, medical and protein post-translational modification. Here we review the recent progress in the development of iTRAQ and its applications in quantitative proteomics.


Subject(s)
Animals , Humans , Mass Spectrometry , Proteomics , Methods
SELECTION OF CITATIONS
SEARCH DETAIL