Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 446-455, 2018.
Article in English | WPRIM | ID: wpr-773597

ABSTRACT

Saposhnikovia divaricata is a valuable Chinese medicinal herb; the transformation from vegetative growth to reproductive growth may lead to the decrease of its pharmacological activities. Therefore, the study of bolting and flowering for Saposhnikovia divaricata is warranted. The present study aimed to reveal differentially expressed genes (DEGs) and regularity of expression during the bolting and flowering process, and the results of this study might provide a theoretical foundation for the suppression of early bolting for future research and practical application. Three sample groups, early flowering, flower bud differentiation, and late flowering (groups A, B, and C, respectively) were selected. Transcriptomic analysis identified 67, 010 annotated unigenes, among which 50, 165 were differentially expressed including 16, 108 in A vs B, and 17, 459 in B vs C, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional classification analysis were performed on these differentially expressed genes, and five important pathways were significantly impacted (P ≤ 0.01): plant circadian rhythm, other glycan degradation, oxidative phosphorylation, plant hormone signal transduction, and starch and sucrose metabolism. Plant hormone signal transduction might play an important role in the bolting and flowering process. The differentially expressed indole-3-acetic acid (IAA) gene showed significant down-regulation during bolting and flowering, while the transport inhibitor response 1 (TIR1) gene showed no significant change during the bolting process. The expression of flowering related genes FLC, LYF, and AP1 also showed a greater difference at different development stages. In conclusion, we speculate that the decrease in auxin concentration is not caused by the degrading effect of TIR1 but by an alternative mechanism.


Subject(s)
Apiaceae , Genetics , Flowers , Genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant , RNA, Plant , Genetics , Reproducibility of Results
2.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 446-455, 2018.
Article in English | WPRIM | ID: wpr-812386

ABSTRACT

Saposhnikovia divaricata is a valuable Chinese medicinal herb; the transformation from vegetative growth to reproductive growth may lead to the decrease of its pharmacological activities. Therefore, the study of bolting and flowering for Saposhnikovia divaricata is warranted. The present study aimed to reveal differentially expressed genes (DEGs) and regularity of expression during the bolting and flowering process, and the results of this study might provide a theoretical foundation for the suppression of early bolting for future research and practical application. Three sample groups, early flowering, flower bud differentiation, and late flowering (groups A, B, and C, respectively) were selected. Transcriptomic analysis identified 67, 010 annotated unigenes, among which 50, 165 were differentially expressed including 16, 108 in A vs B, and 17, 459 in B vs C, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway functional classification analysis were performed on these differentially expressed genes, and five important pathways were significantly impacted (P ≤ 0.01): plant circadian rhythm, other glycan degradation, oxidative phosphorylation, plant hormone signal transduction, and starch and sucrose metabolism. Plant hormone signal transduction might play an important role in the bolting and flowering process. The differentially expressed indole-3-acetic acid (IAA) gene showed significant down-regulation during bolting and flowering, while the transport inhibitor response 1 (TIR1) gene showed no significant change during the bolting process. The expression of flowering related genes FLC, LYF, and AP1 also showed a greater difference at different development stages. In conclusion, we speculate that the decrease in auxin concentration is not caused by the degrading effect of TIR1 but by an alternative mechanism.


Subject(s)
Apiaceae , Genetics , Flowers , Genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant , RNA, Plant , Genetics , Reproducibility of Results
3.
Chinese Traditional and Herbal Drugs ; (24): 2146-2152, 2017.
Article in Chinese | WPRIM | ID: wpr-852795

ABSTRACT

Saposhnikovia divaricate, a kind of traditional medicinal herbs, is widely used in China. The chemical composition of S. divaricate is very complicated, whose main active substances are ketone, coumarin, volatile oil and other ingredients. The pharmacological activities of S. divaricate are mainly concentrated in the antipyretic, analgesic, anti-inflammatory, and other aspects. In this paper, the literatures on the chemical composition and pharmacological effects of S. divaricate at home and abroad are summarized, and some suggestions are put forward for future research. The aim is to provide theoretical reference for the development and utilization and in-depth study of S. divaricate.

4.
China Journal of Chinese Materia Medica ; (24): 1957-1963, 2017.
Article in Chinese | WPRIM | ID: wpr-256068

ABSTRACT

The experiment was aimed to investigate the difference of plasma concentration and pharmacokinetic parameters between liposome and aqueous solution of toatal ginsenoside of ginseng stems and leaves in rats, such as ginsenosides Rg₁, Re, Rf, Rb₁, Rg₂, Rc, Rb₂, Rb₃, Rd. After intravenous injection of liposome and aqueous solution in rats, the blood was taken from the femoral vein to detect the plasma concentration of the above 9 ginsenoside monomers in different time points by using HPLC. The concentration-time curve was obtained and 3p97 pharmacokinetic software was used to get the pharmacokinetic parameters. After the intravenous injection of ginsenosides to rats, nine ginsenosides were detected in plasma. In general, among these ginsenosides, the peak time of the aqueous solution was between 0.05 to 0.083 3 h, and the serum concentration peak of liposome usually appeared after 0.5 h. After software fitting, the aqueous solution of ginsenoside monomers Rg₁, Re, Rf, Rg₂, Rc, Rd, Rb₃ was two-compartment model, and the liposomes were one-compartment model; aqueous solution and liposome of ginsenoside monomers Rb₁ were three-compartment model; aqueous solution of ginsenoside monomers Rb₂ was three-compartment model, and its liposome was one-compartment model. Area under the drug time curve (AUC) of these 9 kinds of saponin liposomes was larger than that of aqueous solution, and the retention time of the liposomes was longer than that of the aqueous solution; the removal rate was slower than that of the aqueous solution, and the half-life was longer than that of the water solution. The results from the experiment showed that by intravenous administration, the pharmacokinetic parameters of two formulations were significantly different from each other; the liposomes could not only remain the drug for a longer time in vivo, but also reduce the elimination rate and increase the treatment efficacy. As compared with the traditional dosage forms, the total ginsenoside of ginseng stems and leaves can improve the sustained release of the drug, which is of great significance for the research and development of new dosage forms of ginsenosides in the future.

5.
Chinese Traditional and Herbal Drugs ; (24): 3098-3102, 2016.
Article in Chinese | WPRIM | ID: wpr-853317

ABSTRACT

Objective: To analyze the genetic diversity and genetic relationship in different cultivars of Curcumae Rhizoma (CR) and identified with molecular marker technique. Methods: Forty-two samples in four cultivars of CR germplasm resources were studied with RAPD-PCR marker. The genetic similar coefficient and genetic distance were analyzed by POPGEN32 software and clustered by UPGMA method. Results: Ten primers were selected from 90 random primers, a total of 83 loci were scored, among which 64 were polymorphic loci. The percentage of polymorphic loci was 77.5%. Genetic distance changed from 0.22 to 0.58. The dendrogram of different CR cultivars was clear. Conclusion: The abundant diversity of CR from different populations exists with significant genetic differentiation, which is the key for screening the germplasm resources of CR and the basis for breeding and biotechnological development of CR.

6.
China Journal of Chinese Materia Medica ; (24): 3117-3122, 2014.
Article in Chinese | WPRIM | ID: wpr-327832

ABSTRACT

The present study is to investigate the quality changes of ginseng stems and leaves before and after frost. The contents changes of ginsenoside, free amino acid, and total phenolic compounds, as well as DPPH radical scavenging effect before and after frost were measured. The content of 9 ginsenoside monomer in ginseng stems was decreased except for Rg, and Re after frost, but in ginseng leaves was all decreased. The total content of amino acids was decreased in ginseng stems after frost, while increased in ginseng leaves. The content of phenolic compounds in ginseng stems and leaves were both decreased after frost while the ability of DPPH radical scavenging was improved. The factor of frost has great impact on the quality of ginseng stems and leaves.


Subject(s)
Drugs, Chinese Herbal , Chemistry , Ecosystem , Freezing , Panax , Chemistry , Plant Leaves , Chemistry , Plant Stems , Chemistry , Quality Control
SELECTION OF CITATIONS
SEARCH DETAIL