Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Malaysian Journal of Microbiology ; : 408-423, 2022.
Article in English | WPRIM | ID: wpr-979368

ABSTRACT

Aims@#The primary aim of this study was to utilize abundant palm oil mill effluent (POME) waste and turn it into a value-added product of biomass fuel with high calorific energy value (CEV) via fermentation and drying process, then simultaneously reduce abundant liquid waste.@*Methodology and results@#POME is available abundantly in Malaysia and only a small portion of it is utilized to produce other value-added products. In this study, fermentation of POME in the presence of bacteria (Lysinibacillus sp.) and fungus (Aspergillus flavus) separately at 37 °C, 180 rpm for 5 days, followed by overnight oven-drying at 85 °C was conducted. Four fermentation medium conditions were performed, viz.: (1) autoclaved POME, (2) autoclaved POME with the addition of Lysinibacillus sp., (3) autoclaved POME with the addition of A. flavus and (4) POME as it is (non-sterile).@*Conclusion, significance and impact of study@#Among all conditions, fermentation utilizing autoclaved POME in the presence of A. flavus evinced the highest CEV of 25.18 MJ/kg. The fermentation in the presence of Lysinibacillus sp. strain revealed high COD and BOD removal efficiency of 59.20% and 320.44 mg/L as well as the highest reduction of oils and grease among other groups with the value of 15.84%. Future research directions are proposed for the elucidation of co-fermentation in the presence of both Lysinibacillus sp. and A. flavus.


Subject(s)
Palm Oil , Biomass , Biofuels , Waste Disposal, Fluid
2.
Malaysian Journal of Microbiology ; : 624-634, 2021.
Article in English | WPRIM | ID: wpr-974009

ABSTRACT

Aims@#The primary aim of the present study is to evaluate the effect of rearing substrates on the nutritional content of black soldier fly larvae (BSFL) by incorporating Cupriavidus necator cells containing intracellular polyhydroxybutyrate (PHB) in BSFL diet to further increase the protein content and simultaneously to biologically extract the polymer by utilizing the digestive system of BSFL. The potential application of BSFL as a biological PHB extraction agent was determined.@*Methodology and results@#Two feeding strategies consists of a mixture of protein (P) to carbohydrate (C) with a ratio of P50:C50 food waste (control feeding) and feed with bacterial cells (modified feeding). A comparison on the proximate analysis between this research and two commercially available products were conducted. Feeding BSFL with P50:C50 food waste revealed the highest crude protein content of 81.3 ± 0.2%. Additional bacteria cells in the BSFL diet, however, showed a negligible decrease in crude protein content of 0.67% as compared to the control feeding. Howbeit, this results comparably higher in contrast to the commercial products, with increment of crude protein content by 12.1% and 40.8%, respectively.@*Conclusion, significance and impact of study@#Two desirable products were obtained from the feeding with cells: (1) high protein content of BSFL and (2) biologically extracted polymer. This is the first study to demonstrate the utilization of BSFL as a biological extraction agent to partially extract biopolymer and increase the protein content by feeding with cells.


Subject(s)
Diptera , Polyhydroxybutyrates , Animal Feed
SELECTION OF CITATIONS
SEARCH DETAIL