ABSTRACT
Background@#This study aimed to establish an image evaluation grading criteria for experimental stifle joint osteoar‑ thritis (OA) in anterior cruciate ligament transection induced OA beagle dog models. The severity of OA was assessed using X-ray and computed tomography (CT) imaging. @*Results@#A total of 32 dogs (8 controls and 24 OA-induced dogs) were included in the study. The OA-induced group showed significantly higher manual joint palpation, gait analysis, and OA severity scores than the control group. Based on these two results, we calculated correlation coefficients. There was a strong positive correlation between manual joint palpation scores and OA severity on diagnostic imaging and between gait analysis scores and OA severity. @*Conclusions@#The developed grading criteria based on radiographic evaluation correlated with clinical assessments. The study also employed CT imaging to enhance the accuracy and sensitivity of early-stage OA change detec‑ tion in the stifle joint. However, further studies with larger sample sizes and multiple evaluators are recommended for the validation and generalizability of this grading system. These established image evaluation grading criteria can help evaluate and monitor the efficacy of interventions and changes in OA lesions in canine models.
ABSTRACT
It has been shown that the accumulation of prion in the cytoplasm can result in neurodegenerative disorders. Synthetic prion peptide 106-126 (PrP) is a glycoprotein that is expressed predominantly by neurons and other cells, including glial cells. Prion-induced chronic neurodegeneration has a substantial inflammatory component, and an increase in the levels of matrix metalloproteinases (MMPs) may play an important role in neurodegenerative development and progression. However, the expression of MMPs in PrP induced rat astrocytes and microglia has not yet been compared. Thus, in this study, we examined the fluorescence intensity of CD11b positive microglia and Glial Fibrillary Acidic Protein (GFAP) positive astrocytes and found that the fluorescent intensity was increased following incubation with PrP at 24 hours in a dose-dependent manner. We also observed an increase in interleukin-1 beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) protein expression, which are initial inflammatory cytokines, in both PrP induced astrocytes and microglia. Furthermore, an increase MMP-1, 3 and 11 expressions in PrP induced astrocytes and microglia was observed by real time PCR. Our results demonstrated PrP induced activation of astrocytes and microglia respectively, which resulted in an increase in inflammatory cytokines and MMPs expression. These results provide the insight into the different sensitivities of glial cells to PrP.