Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 63-70, 2019.
Article in English | WPRIM | ID: wpr-719640

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate NF-κB signaling. Moreover, expression of PD-L1 and CD80 on PD-1+ MDSCs was higher than on PD-1− MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in PD-1+ MDSCs than in PD-1− MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that PD-1+ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.


Subject(s)
Animals , Humans , Mice , Antigen-Presenting Cells , Autoimmune Diseases , Bone Marrow , Bone Marrow Cells , Breast , Recurrence , Spleen , T-Lymphocytes , Tumor Microenvironment
2.
Biomolecules & Therapeutics ; : 9-18, 2016.
Article in English | WPRIM | ID: wpr-20744

ABSTRACT

Bone matrix is properly maintained by osteoclasts and osteoblasts. In the tumor microenvironment, osteoclasts are increasingly differentiated by the various ligands and cytokines secreted from the metastasized cancer cells at the bone metastasis niche. The activated osteoclasts generate osteolytic lesions. For this reason, studies focusing on the differentiation of osteoclasts are important to reduce bone destruction by tumor metastasis. The N-myc downstream-regulated gene 2 (NDRG2) has been known to contribute to the suppression of tumor growth and metastasis, but the precise role of NDRG2 in osteoclast differentiation induced by cancer cells has not been elucidated. In this study, we demonstrate that NDRG2 expression in breast cancer cells has an inhibitory effect on osteoclast differentiation. RAW 264.7 cells, which are monocytic preosteoclast cells, treated with the conditioned media (CM) of murine breast cancer cells (4T1) expressing NDRG2 are less differentiated into the multinucleated osteoclast-like cells than those treated with the CM of 4T1-WT or 4T1-mock cells. Interestingly, 4T1 cells stably expressing NDRG2 showed a decreased mRNA and protein level of intercellular adhesion molecule 1 (ICAM1), which is known to enhance osteoclast maturation. Osteoclast differentiation was also reduced by ICAM1 knockdown in 4T1 cells. In addition, blocking the interaction between soluble ICAM1 and ICAM1 receptors significantly decreased osteoclastogenesis of RAW 264.7 cells in the tumor environment. Collectively, these results suggest that the reduction of ICAM1 expression by NDRG2 in breast cancer cells decreases osteoclast differentiation, and demonstrate that excessive bone resorption could be inhibited via ICAM1 down-regulation by NDRG2 expression.


Subject(s)
Bone Matrix , Bone Resorption , Breast Neoplasms , Breast , Culture Media, Conditioned , Cytokines , Down-Regulation , Intercellular Adhesion Molecule-1 , Ligands , Neoplasm Metastasis , Osteoblasts , Osteoclasts , RNA, Messenger , Tumor Microenvironment
3.
Immune Network ; : 348-357, 2011.
Article in English | WPRIM | ID: wpr-60140

ABSTRACT

BACKGROUND: N-myc downstream-regulated gene 2 (NDRG2), a member of a newly described family of differentiation-related genes, has been characterized as a regulator of dendritic cells. However, the role of NDRG2 on the expression and activation of transcription factors in blood cells remains poorly understood. In this study, we investigated the effects of NDRG2 overexpression on GATA-1 expression in PMA-stimulated U937 cells. METHODS: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 on GATA-1 expression. RESULTS: NDRG2 overexpression in U937 cells significantly induced GATA-1 expression in response to PMA stimulation. Interestingly, JAK2/STAT and BMP-4/Smad pathways associated with the induction of GATA-1 were activated in PMA-stimulated U937-NDRG2 cells. We found that the inhibition of JAK2 activation, but not of BMP-4/Smad signaling, can elicit a decrease of PMA-induced GATA-1 expression in U937-NDRG2 cells. CONCLUSION: The results reveal that NDRG2 promotes the expression of GATA-1 through activation of the JAK2/STAT pathway, but not through the regulation of the BMP-4/Smad pathway in U937 cells. Our findings further suggest that NDRG2 may play a role as a regulator of erythrocyte and megakaryocyte differentiation during hematopoiesis.


Subject(s)
Humans , Blood Cells , Dendritic Cells , Erythrocytes , Hematopoiesis , Megakaryocytes , Transcription Factors , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL