Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. j. infect. dis ; 22(4): 347-351, July-Aug. 2018. tab
Article in English | LILACS | ID: biblio-1039216

ABSTRACT

ABSTRACT Bloodstream and venous catheter-related corynebacterial infections in paediatric patients with haematological cancer were investigated from January 2003 to December 2014 at the Brazilian National Cancer Institute in Rio de Janeiro, Brazil. We observed that during cancer treatment, invasive corynebacterial infections occurred independent of certain factors, such as age and gender, underlying diseases and neutropenia. These infections were ssscaused by Corynebacterium amycolatum and other non-diphtherial corynebacteria. All cases presented a variable profile of susceptibility to antimicrobial agents, except to vancomycin. Targeted antibiotic therapy may contribute to catheters maintenance and support quality of treatment. Non-diphtherial corynebacteria must be recognized as agents associated with venous access infections. Our data highlight the need for the accurate identification of corynebacteria species, as well as antimicrobial susceptibility testing.


Subject(s)
Humans , Male , Female , Infant , Child, Preschool , Child , Adolescent , Corynebacterium/isolation & purification , Corynebacterium Infections/complications , Catheter-Related Infections/microbiology , Central Venous Catheters/microbiology , Brazil/epidemiology , Vancomycin/therapeutic use , Microbial Sensitivity Tests , Bacteremia/microbiology , Bacteremia/epidemiology , Sex Distribution , Age Distribution , Hematologic Neoplasms/microbiology , Hematologic Neoplasms/epidemiology , Corynebacterium Infections/drug therapy , Catheter-Related Infections/drug therapy , Catheter-Related Infections/epidemiology , Anti-Bacterial Agents/therapeutic use
2.
Mem. Inst. Oswaldo Cruz ; 110(2): 242-248, 04/2015. tab, graf
Article in English | LILACS | ID: lil-744474

ABSTRACT

Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum 1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatum bound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum.


Subject(s)
Adult , Aged , Humans , Middle Aged , Foot , Nursing Care , Surveys and Questionnaires
3.
Mem. Inst. Oswaldo Cruz ; 107(4): 486-493, June 2012. ilus, graf
Article in English | LILACS | ID: lil-626442

ABSTRACT

Corynebacterium pseudodiphtheriticum is a well-known human pathogen that mainly causes respiratory disease and is associated with high mortality in compromised hosts. Little is known about the virulence factors and pathogenesis of C. pseudodiphtheriticum. In this study, cultured human epithelial (HEp-2) cells were used to analyse the adherence pattern, internalisation and intracellular survival of the ATCC 10700 type strain and two additional clinical isolates. These microorganisms exhibited an aggregative adherence-like pattern to HEp-2 cells characterised by clumps of bacteria with a "stacked-brick" appearance. The differences in the ability of these microorganisms to invade and survive within HEp-2 cells and replicate in the extracellular environment up to 24 h post infection were evaluated. The fluorescent actin staining test demonstrated that actin polymerisation is involved in the internalisation of the C. pseudodiphtheriticum strains. The depolymerisation of microfilaments by cytochalasin E significantly reduced the internalisation of C. pseudodiphtheriticum by HEp-2 cells. Bacterial internalisation and cytoskeletal rearrangement seemed to be partially triggered by the activation of tyrosine kinase activity. Although C. pseudodiphtheriticum strains did not demonstrate an ability to replicate intracellularly, HEp-2 cells were unable to fully clear the pathogen within 24 h. These characteristics may explain how some C. pseudodiphtheriticum strains cause severe infection in human patients.


Subject(s)
Humans , Bacterial Adhesion/physiology , Corynebacterium/pathogenicity , Epithelial Cells/microbiology , Corynebacterium/physiology , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL