Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Anatomy & Cell Biology ; : 32-38, 2023.
Article in English | WPRIM | ID: wpr-966189

ABSTRACT

The Galenic venous system plays a vital role in the drainage of blood from deeper parts of the brain. This venous system is contributed by many major veins. These veins are located closer to the pineal gland making the surgical approach in this region difficult. Any accidental injury or occlusion of the vein of Galen could lead to devasting results. Thus, studying the dimensions of the vein of Galen is more important. Hence, we aimed to evaluate the morphometry and trajectory to the vein of Galen. About 100 computed tomographic venography records were evaluated and the length, diameter of vein of Galen, angle between straight sinus and vein of Galen and distance from internal occipital protuberance and roof of fourth ventricle to vein of Galen were studied. The mean length and diameter of vein of Galen were 9.8±2.7 and 4.08±1.04 respectively. The mean angle between straight sinus and vein of Galen was 64.2°. The mean distance between external occipital protuberance and roof of fourth ventricle to vein of Galen were 52±6.9 and 33.3±4.5 respectively. No significant morphometric differences were observed between the age groups as well as between the sexs. The results obtained from this study may be helpful for the neurosurgeons in better understanding of the anatomy of the Galenic venous system and to adopt a safe surgical approach to improve the efficacy of the surgeries of the pineal gland and also in the region of vein of Galen.

2.
Article in English | IMSEAR | ID: sea-154601

ABSTRACT

Recent years have been dominated by research in nano science. Dentistry is no exception and there is increased research on nanoparticles in dentistry. Complete dentures increase the carriage of Candida in healthy patients, and the proliferation of C. albicans can be associated with denture-induced stomatitis. Purpose: To evaluate the anti-Candida effect of heat cure denture base resins reinforced with Ag° in the ratio of 4:1, 3:1, 2:1 (Groups B, C, and D, respectively) to the weight of denture base resins. Materials and Methods: Ag° were synthesized by chemical reduction method, incorporated into the polymer powder according to the ratio for each group, subjected to polymerization and microbial assay was calculated for the reference C. albicans strains by agar diffusion method for the incubation period of 24 h. Results: Group D showed multifold decrease in the colony-forming units. Conclusion: The antimicrobial effect of silver could be used vividly in the denture base for immunocompromised and geriatric patients.


Subject(s)
Candida albicans/drug therapy , Candida albicans/therapy , Hot Temperature/therapeutic use , Nanoparticles/therapeutic use , Polymethyl Methacrylate/therapeutic use , /therapeutic use , /drug therapy , /therapy
3.
J Environ Biol ; 2007 Oct; 28(4): 779-88
Article in English | IMSEAR | ID: sea-113278

ABSTRACT

To quantify the nitrogen losses through runoff and leaching under a tea plantation in hilly soil, a field experiment was conducted from October 2001 to October 2002 at United Planters Association of Southern India (UPASI), Coonoorin Nilgiri district. Runoff water was collected in the collection tub on most rainy days but the leachate was collected in the soil water sampler when the rainfall exceeded 150 mm. Higher nitrogen fertilization levels significantly influenced the NO3-N concentration in both the runoff and leachate and it was likely to cause adverse environmental impact at the delivery end. The NH4-N and NO3-N concentrations in runoff decreased with the days after fertilizer application. NH4-N concentration reduced from 10.27 mg/l on the 9th day to 1.72 mg/l on the 34th day after fertilizer application. NO3-N concentration reduced from 23.5 mg/l on the 9th day to 4.32 mg/l on the 34th day after fertilizer application. Nitrogen loss varied depending on the quantity of rainfall and runoff. The NO3-N concentration in the leachate increased with increase in depth (18.06 mg/l at 22.5 cm depth to 20.98 mg/l at 45 cm depth) whereas NH4-N concentration decreased with increase in depth (6.32 mg/l at 22.5 cm depth to 5.79 mg/l at 45 cm depth.


Subject(s)
Ecosystem , Environmental Pollutants/analysis , Fertilizers , Hydrogen-Ion Concentration , Nitrates/analysis , Nitrogen , Tea
SELECTION OF CITATIONS
SEARCH DETAIL