Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biomolecules & Therapeutics ; : 48-54, 2022.
Article in English | WPRIM | ID: wpr-913713

ABSTRACT

GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gα i/o and Gα q/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of preexisting compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

2.
Experimental & Molecular Medicine ; : 651-661, 2010.
Article in English | WPRIM | ID: wpr-162252

ABSTRACT

Successful hematopoietic stem cell transplantation (HSCT) involves the restoration of hematopoietic function after engraftment, arising from the differentiation and proliferation of hematopoietic stem cells. Several factors could influence the course of allogeneic-HSCT (allo-HSCT). Therefore, knowledge of serum proteome changes during the allo-HSCT period might increase the efficacy of diagnosis and disease prevention efforts. This study conducted proteomic analyses to find proteins that were significantly altered in response to allo-HSCT. Sera from five representative patients who underwent allo-HSCT were analyzed by 2-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry, and were measured on a weekly basis before and after allo-HSCT in additional 78 patients. Fourteen protein spots showing changes in expression were further examined, and most proteins were identified as acute phase proteins (APPs). Studies of 78 additional patients confirmed that C-reactive protein (CRP) and haptoglobin undergo expression changes during allo-HSCT and thus may have the potential to serve as representative markers of clinical events after allo-HSCT. Maximal CRP level affected the development of major transplant-related complications (MTCs) and other problems such as fever of unknown origin. Particularly, an increase in CRP level 21 days after allo-HSCT was found to be an independent risk factor for MTC. Maximal haptoglobin and haptoglobin level 14 days after allo-HSCT were predictive of relapses in underlying hematologic disease. Our results indicated that CRP and haptoglobin were significantly expressed during allo-HSCT, and suggest that their level can be monitored after allo-HSCT to assess the risks of early transplant-related complications and relapse.


Subject(s)
Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Biomarkers , C-Reactive Protein/metabolism , Haptoglobins/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Proteome/metabolism , Proteomics , Transplantation Conditioning , Transplantation, Homologous
3.
The Korean Journal of Parasitology ; : 195-201, 2010.
Article in English | WPRIM | ID: wpr-46702

ABSTRACT

We studied on the proteomic characteristics of Toxoplasma gondii KI-1 tachyzoites which were originally isolated from a Korean patient, and compared with those of the well-known virulent RH strain using 2-dimensional electrophoresis (2-DE), mass spectrometry, and quantitative real-time PCR. Two-dimensional separation of the total proteins isolated from KI-1 tachyzoites revealed up to 150 spots, of which 121 were consistent with those of RH tachyzoites. Of the remaining 29 spots, 14 showed greater than 5-fold difference in density between the KI-1 and RH tachyzoites at a pH of 5.0-8.0. Among the 14 spots, 5 from the KI-1 isolate and 7 from the RH strain were identified using MALDI-TOF mass spectrometry and database searches. The spots from the KI-1 tachyzoites were dense granule proteins (GRA 2, 3, 6, and 7), hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGRPTase), and uracil phosphoribosyltransferase (UPRTase). The spots from the RH strain were surface antigen 1 (SAG 1), L-lactate dehydrogenase (LDH), actin, chorismate synthase, peroximal catalase, hexokinase, bifunctional dihydrofolate reductase-thymidylate synthase (DHTR-TS), and nucleoside-triphosphatases (NTPases). Quantitative real-time PCR supported our mass spectrometric results by showing the elevated expression of the genes encoding GRA 2, 3, and 6 and UPRTase in the KI-1 tachyzoites and those encoding GRA 7, SAG 1, NTPase, and chorismate synthase in the RH tachyzoites. These observations demonstrate that the protein compositions of KI-1 and RH tachyzoites are similar but differential protein expression is involved in virulence.


Subject(s)
Humans , Electrophoresis, Gel, Two-Dimensional , Gene Expression Regulation, Developmental , Molecular Sequence Data , Proteomics , Protozoan Proteins/chemistry , Toxoplasma/chemistry , Toxoplasmosis/parasitology
4.
Experimental & Molecular Medicine ; : 677-685, 2008.
Article in English | WPRIM | ID: wpr-167145

ABSTRACT

Atopic dermatitis (AD) is an inflammatory skin disorder that is both uncomfortable and distressing to patients, and its prevalence has been steadily increasing. It is obvious that the identification of efficient markers of AD in plasma would offer the possibility of effective diagnosis, prevention, and treatment strategies. In this study, a proteomic approach was used to analyze plasma glycoproteins from both children with AD and healthy child donors. Several protein spots showing significant quantitative changes in the AD patients were identified. Through sequential studies, it was confirmed that CD5L and ApoE were significantly up-regulated or down-regulated, respectively, in the plasma from AD patients compared with that from healthy donors. In addition, we suggest that the up-regulated CD5L in AD patients causes eosinophilia by inhibiting apoptosis or promoting the proliferation of eosinophils either in combination with or without IL-5. The glycoproteomic data in this study provides clues to understanding the mechanism of atopic alterations in plasma and suggests AD-related proteins can be used as candidate markers for AD.


Subject(s)
Child , Female , Humans , Male , Apolipoproteins E/blood , Biomarkers/blood , Cell Line , Cell Proliferation , Dermatitis, Atopic/metabolism , Eosinophilia/metabolism , Eosinophils/physiology , Glycoproteins/blood , Interleukin-5/metabolism , Proteomics , Scavenger Receptors, Class B/blood
SELECTION OF CITATIONS
SEARCH DETAIL