Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 113-123, 2022.
Article in English | WPRIM | ID: wpr-927086

ABSTRACT

Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β(ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormonestimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmiaassociated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.

2.
Annals of Dermatology ; : 6-12, 2017.
Article in English | WPRIM | ID: wpr-37420

ABSTRACT

BACKGROUND: Kinetin is a plant hormone that regulates growth and differentiation. Keratinocytes, the basic building blocks of the epidermis, function in maintaining the skin barrier. OBJECTIVE: We examined whether kinetin induces skin barrier functions in vitro and in vivo. METHODS: To evaluate the efficacy of kinetin at the cellular level, expression of keratinocyte differentiation markers was assessed. Moreover, we examined the clinical efficacy of kinetin by evaluating skin moisture, transepidermal water loss (TEWL), and skin surface roughness in patients who used kinetin-containing cream. We performed quantitative real-time polymerase chain reaction to measure the expression of keratinocyte differentiation markers in HaCaT cells following treatment. A clinical trial was performed to assess skin moisture, TEWL, and evenness of skin texture in subjects who used kinetin-containing cream for 4 weeks. RESULTS: Kinetin increased involucrin, and keratin 1 mRNA in HaCaT cells. Moreover, use of a kinetin-containing cream improved skin moisture and TEWL while decreasing roughness of skin texture. CONCLUSION: Kinetin induced the expression of keratinocyte differentiation markers, suggesting that it may affect differentiation to improve skin moisture content, TEWL, and other signs of skin aging. Therefore, kinetin is a potential new component for use in cosmetics as an anti-aging agent that improves the barrier function of skin.


Subject(s)
Humans , Antigens, Differentiation , Cell Culture Techniques , Epidermis , In Vitro Techniques , Keratin-1 , Keratinocytes , Kinetin , Plants , Real-Time Polymerase Chain Reaction , RNA, Messenger , Skin Aging , Skin , Treatment Outcome , Water
3.
Annals of Dermatology ; : 433-437, 2016.
Article in English | WPRIM | ID: wpr-171612

ABSTRACT

BACKGROUND: We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. OBJECTIVE: We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. METHODS: To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. RESULTS: Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. CONCLUSION: These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.


Subject(s)
Blotting, Western , Cell Differentiation , Keratinocytes , Molecular Biology , Nuclear Energy , Polymerase Chain Reaction , Radiation, Ionizing , RNA, Messenger
4.
Annals of Dermatology ; : 327-334, 2016.
Article in English | WPRIM | ID: wpr-105048

ABSTRACT

BACKGROUND: Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. OBJECTIVE: We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. METHODS: We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. RESULTS: EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. CONCLUSION: Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs.


Subject(s)
Humans , Aging , Alopecia , Cell Cycle Checkpoints , Cell Death , Cell Survival , Computational Biology , Dihydrotestosterone , Genome , Hair , Hair Follicle , MicroRNAs , Reactive Oxygen Species , Tea
5.
Annals of Dermatology ; : 740-748, 2016.
Article in English | WPRIM | ID: wpr-25361

ABSTRACT

BACKGROUND: Approximately 90%~99% of ultraviolet A (UVA) ray reaches the Earth's surface. The deeply penetrating UVA rays induce the formation of reactive oxygen species (ROS), which results in oxidative stress such as photoproducts, senescence, and cell death. Thus, UVA is considered a primary factor that promotes skin aging. OBJECTIVE: Researchers investigated whether pretreatment with ferulic acid protects human dermal fibroblasts (HDFs) against UVA-induced cell damages. METHODS: HDF proliferation was analyzed using the water-soluble tetrazolium salt assay. Cell cycle distribution and intracellular ROS levels were assessed by flow cytometric analysis. Senescence was evaluated using a senescence-associated β-galactosidase assay, while Gadd45α promoter activity was analyzed through a luciferase assay. The expression levels of superoxide dismutase 1 (SOD1), catalase (CAT), xeroderma pigmentosum complementation group A and C, matrix metalloproteinase 1 and 3, as well as p21 and p16 were measured using quantitative real-time polymerase chain reaction. RESULTS: Inhibition of proliferation and cell cycle arrest were detected in cells that were irradiated with UVA only. Pretreatment with ferulic acid significantly increased the proliferation and cell cycle progression in HDFs. Moreover, ferulic acid pretreatment produced antioxidant effects such as reduced DCF intensity, and affected SOD1 and CAT mRNA expression. These effects were also demonstrated in the analysis of cell senescence, promoter activity, expression of senescent markers, and DNA repair. CONCLUSION: These results demonstrate that ferulic acid exerts protective effects on UVA-induced cell damages via anti-oxidant and stress-inducible cellular mechanisms in HDFs.


Subject(s)
Animals , Cats , Humans , Aging , Antioxidants , Catalase , Cellular Senescence , Cell Cycle , Cell Cycle Checkpoints , Cell Death , Complement System Proteins , DNA Repair , Fibroblasts , Luciferases , Matrix Metalloproteinase 1 , Oxidative Stress , Reactive Oxygen Species , Real-Time Polymerase Chain Reaction , RNA, Messenger , Skin Aging , Superoxide Dismutase , Ultraviolet Rays , Xeroderma Pigmentosum
SELECTION OF CITATIONS
SEARCH DETAIL