Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 27(4): 480-487, July-Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-898691

ABSTRACT

ABSTRACT A methanol extract from the whole plant of Dendrobium formosum Roxb. ex Lindl., Orchidaceae, showed inhibitory potential against α-glucosidase and pancreatic lipase enzymes. Chromatographic separation of the extract resulted in the isolation of twelve phenolic compounds. The structures of these compounds were determined through analysis of NMR and HR-ESI-MS data. All of the isolates were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities, as well as glucose uptake stimulatory effect. Among the isolates, 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone (12) showed the highest α-glucosidase and pancreatic lipase inhibitory effects with an IC50 values of 126.88 ± 0.66 µM and 69.45 ± 10.14 µM, respectively. An enzyme kinetics study was conducted by the Lineweaver-Burk plot method. The kinetics studies revealed that compound 12 was a non-competitive inhibitor of α-glucosidase and pancreatic lipase enzymes. Moreover, lusianthridin at 1 and 10 µg/ml and moscatilin at 100 µg/ml showed glucose uptake stimulatory effect without toxicity on L6 myotubes. This study is the first report on the phytochemical constituents and anti-diabetic and anti-obesity activities of D. formosum.

2.
Rev. bras. farmacogn ; 26(3): 312-320, May-June 2016. tab, graf
Article in English | LILACS | ID: lil-784293

ABSTRACT

Abstract The leaves of Garcinia gracilis Pierre, Clusiaceae, have been used as flavouring materials in food, with no previous reports of their biological activities and chemical constituents. In this study, the methanolic extract of G. gracilis afforded three compounds namely apigenin-8-C-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside (1), 5-hydroxymethyl-2-furaldehyde, and vanillic acid. All of the isolates were initially evaluated for superoxide anion radical scavenging activity and α-glucosidase inhibitory effects. Compound 1, which was the major component, showed the most potent activities among these three isolates. Further biological evaluations revealed that compound 1 could prevent the pBR322 plasmid DNA damage induced by the photochemical reaction of riboflavin and protect P19-derived neurons from the oxidative stress condition induced by serum deprivation. It was concluded that the potent biological activities of G. gracilis could be attributed to the synergistic effect of compound 1 with other constituents found in the plant.

SELECTION OF CITATIONS
SEARCH DETAIL