Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e21219, 2022. tab, graf
Article in English | LILACS | ID: biblio-1420483

ABSTRACT

Abstract The aim of the present study is to investigate the cardioprotective effects of 18ß-glycyrrhetinic acid (18ß -GA) against oxidative and histological damage caused by global cerebral ischemia/ reperfusion (I/R) in C57BL/J6 mice. All male mice (n:40) were randomly divided into four groups: (1) sham-operated (Sham), (2) I/R, (3) 18ß-GA, and (4) 18ß -GA+I/R. Ischemia was not applied to the sham and 18ß-GA groups. In the I/R group, the bilateral carotid arteries were clipped for 15 min to induce ischemia, and the mice were treated with the vehicle for 10 days. In the 18ß-GA group, the mice were given 18ß-GA (100 mg/kg) for 10 days following a median incision without carotid occlusion. In the 18ß-GA+I/R group, the ischemic procedure performed to the I/R model was applied to the animals and afterwards they were intraperitoneally (i.p.) treated with 18ß-GA (100 mg/kg) for 10 days. It was found that global cerebral I/R increased TBARS levels and decreased antioxidant parameters. The 18ß-GA treatment decreased the level of TBARS and increased GSH, GPx, CAT, SOD activities. Also, the control group cardiac tissue samples were observed to have a normal histological appearance with the Hematoxylin-Eosin staining method. Histopathological damage was observed in the heart tissue samples belonging to the I/R group. The 18ß-GA treatment ameliorates oxidative and histological injury in the heart tissue after global ischemia reperfusion, and may be a beneficial alternative treatment


Subject(s)
Animals , Male , Mice , Cardiotonic Agents/adverse effects , Reperfusion/adverse effects , Brain Ischemia/pathology , Staining and Labeling/instrumentation , Oxidative Stress , Antioxidants/pharmacology
2.
Braz. J. Pharm. Sci. (Online) ; 55: e18312, 2019. tab, ilus
Article in English | LILACS | ID: biblio-1039066

ABSTRACT

Beta-glucans (ßg), that have many useful effects on human health, are natural polysaccharides. Our aim in this study was to determine useful effect of ßg against oxidative and neuronal damage caused by global cerebral ischemia/reperfusion (IR) in stroke imitated mice via surgical operation. A total of 40 mice divided into four equal groups randomly. The group 1 (sham operated) was kept as control. Bilateral carotid arteries of subjects in group 2 (I/R) and group 4 (I/ R + ßg) were clipped for 15 min, and the mice in group 4 (I/R + ßg) were treated with ßg (50 mg/kg/day), while the mice in group 2 (I/R) were treated with only vehicle for 10 days. The mice of group 3 (ßg) were treated with ßg for 10 days without carotid occlusion. Global cerebral I/R significantly increased oxidative stress and decreased members of anti-oxidant defense system. In addition, I/R caused histopathological damage in the brain tissue. However, ßg treatment ameliorated both oxidative and histopathological effects of I/R. Our present study showed that ßg treatment significantly ameliorated oxidative and histological damage in the brain tissue caused by cerebral I/R. Therefore, ßg treatment can be used as supportive care for ischemic stroke patients


Subject(s)
Animals , Mice , Oxidative Stress/physiology , beta-Glucans/analysis , Brain Ischemia/chemically induced , Nerve Degeneration
3.
Braz. J. Pharm. Sci. (Online) ; 54(3): e17674, 2018. graf
Article in English | LILACS | ID: biblio-974418

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widespread environmental contaminant which causes severe toxic effects. Despite there is some suggestion concerning with TCDD induced cardiotoxicity such as formation of free radicals, the main mechanism has not been entirely explained. Beta-glucan is known as strong antioxidant matter and can scavenge free radicals. Therefore this study aimed to investigate the protective effects of beta-glucan against TCDD induced cardiotoxicity in rats. In this study, 2-3 months of age and 190-250 g in weight 32 rats were randomly divided into four equal groups (n=8 for each group). Group 1 was control; Group 2 was TCDD group (2 µg/kg/week); group 3 was the beta-glucan group(50 mg/kg/day), and group 4 was TCDD and beta-glucan treatment group. The heart samples were taken from rats after 21 days treatment. The results were shown that Despite TCDD exposure visibly caused to increase (p ≤ 0.001) in TBARS levels, It caused a visible decline in the levels of GSH, CAT, GSH-Px, and SOD. However Beta glucan significantly increased GSH, CAT, GSH-Px, SOD levels and decreased generation of TBARS. Additionally, our histopathological observations were in agreement with the biochemical results. In conclusion, Beta-glucan treatment exhibited protective activity on TCDD induced cardiotoxicity


Subject(s)
Animals , Female , Rats , beta-Glucans/analysis , beta-Glucans/adverse effects , Polychlorinated Dibenzodioxins/toxicity , Cardiotoxicity/classification
SELECTION OF CITATIONS
SEARCH DETAIL