Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 844-852, 2018.
Article in English | WPRIM | ID: wpr-1010425

ABSTRACT

We examined the effect of a combination of astaxanthin (AX) supplementation, repeated heat stress, and intermittent reloading (IR) on satellite cells in unloaded rat soleus muscles. Forty-nine male Wistar rats (8-week-old) were divided into control, hind-limb unweighting (HU), IR during HU, IR with AX supplementation, IR with repeated heat stress (41.0-41.5 °C for 30 min), and IR with AX supplementation and repeated heat stress groups. After the experimental period, the antigravitational soleus muscle was analyzed using an immunohistochemical technique. Our results revealed that the combination of dietary AX supplementation and heat stress resulted in protection against disuse muscle atrophy in the soleus muscle. This protective effect may be partially due to a higher satellite cell number in the atrophied soleus muscle in the IR/AX/heat stress group compared with the numbers found in the other groups. We concluded that the combination treatment with dietary AX supplementation and repeated heat stress attenuates soleus muscle atrophy, in part by increasing the number of satellite cells.


Subject(s)
Animals , Male , Rats , Body Weight , Dietary Supplements , Fibrinolytic Agents/pharmacology , Heat-Shock Response , Hindlimb , Hot Temperature , Immunohistochemistry , Muscle, Skeletal , Muscular Atrophy/drug therapy , Oxidative Stress , Rats, Wistar , Satellite Cells, Skeletal Muscle/cytology , Xanthophylls/pharmacology
2.
Japanese Journal of Physical Fitness and Sports Medicine ; : 303-312, 2010.
Article in Japanese | WPRIM | ID: wpr-362554

ABSTRACT

The purpose of this study was to examine the effects of combination of a heat stress and astaxanthin supplementation, known as a potent anti-oxidative nutrient, on muscle protein degradation and disuse muscle atrophy. Fifty-two male Wistar rats (261.7±1.17 g) were divided into five groups: control (Cont, n=10), suspension (Sus, n=11), heat stress and suspension (Heat, n=10), astaxanthin and suspension (Ax, n=10), and heat stress, astaxanthin and suspension (H+A, n=11). There were no significant differences in Cu,Zn-SOD, cathepsin L and caspase-3 levels among the Heat, Ax and H+A groups in the soleus and plantaris muscles. Although levels of calpain 2 and ubiquitinated protein in the myofibrillar fraction in the soleus muscle were not significantly different among the Heat, Ax and H+A groups, levels in the H+A group were significantly (p<0.05) lower than Sus. Concerning atrophied plantaris muscles, the H+A group significantly (p<0.05) suppressed the expression of calpain 1 in the myofibrillar fraction, but there were no marked changes of proteolytic indexes. These data indicate that the combination of the heat stress and astaxanthin supplementation could be effective in inhibiting muscle protein degradation in disuse atrophy of the soleus.

3.
Japanese Journal of Physical Fitness and Sports Medicine ; : 167-174, 2010.
Article in Japanese | WPRIM | ID: wpr-362543

ABSTRACT

In the present study, we investigated the effect of heat stress on disuse atrophy from changes in the muscle protein levels of desmin and calpain. Wistar strain female rats (6-8 months old) were randomly assigned to two experimental groups: control (C) and heat stress (H). One hindlimb of all animals was immobilized in plantar flexion with plaster. Before immobilization, animals in H group were placed in a heat chamber (42°C for 60 min). Following 6 days of immobilization, the soleus muscles were removed and analyzed. Although immobilization resulted in significant muscle atrophy in all experimental animals, the soleus weight-to-body weight ratio in immobilized limbs of H group was significantly higher compared to that of C group. Expression of desmin and HSP72 in the atrophied soleus muscle from C group was significantly lower compared with the contralateral muscle; but this was not the case in H group. Further, in C group, the ratio of autolyzed calpains I increased significantly in the atrophied muscle compared to the contralateral muscle. These results show that the effect of heat stress on disuse skeletal muscle atrophy is attributed to the decreasing degradation of desmin by suppressing the activation of calpain.

SELECTION OF CITATIONS
SEARCH DETAIL