Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
J Biosci ; 2011 Jun; 36(2): 383-396
Article in English | IMSEAR | ID: sea-161561

ABSTRACT

Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycaemia resulting in defective insulin secretion, resistance to insulin action or both. The use of biguanides, sulphonylurea and other drugs are valuable in the treatment of diabetes mellitus; their use, however, is restricted by their limited action, pharmacokinetic properties, secondary failure rates and side effects. Trigonella foenum-graecum, commonly known as fenugreek, is a plant that has been extensively used as a source of antidiabetic compounds from its seeds and leaf extracts. Preliminary human trials and animal experiments suggest possible hypoglycaemic and antihyperlipedemic properties of fenugreek seed powder taken orally. Our results show that the action of fenugreek in lowering blood glucose levels is almost comparable to the effect of insulin. Combination with trace metal showed that vanadium had additive effects and manganese had additive effects with insulin on in vitro system in control and diabetic animals of young and old ages using adipose tissue. The Trigonella and vanadium effects were studied in a number of tissues including liver, kidney, brain peripheral nerve, heart, red blood cells and skeletal muscle. Addition of Trigonella to vanadium significantly removed the toxicity of vanadium when used to reduce blood glucose levels. Administration of the various combinations of the antidiabetic compounds to diabetic animals was found to reverse most of the diabetic effects studied at physiological, biochemical, histochemical and molecular levels. Results of the key enzymes of metabolic pathways have been summarized together with glucose transporter, Glut-4 and insulin levels. Our findings illustrate and elucidate the antidiabetic/insulin mimetic effects of Trigonella, manganese and vanadium.

2.
Indian J Exp Biol ; 2008 Dec; 46(12): 852-4
Article in English | IMSEAR | ID: sea-58883

ABSTRACT

Influence of exogenously administered dehydroepiandrosterone (DHEA) on the activity of Na+ K+ ATPase was investigated in synaptosomal fraction from cerebral cortex, cerebellum, hippocampus and medulla regions of brain of 12 and 22 months old rats. DHEA was administered daily at the dose of 30 mg/kg/body wt, intraperitonially (ip) in both the age groups of rats for 1 month. Results showed that Na+ K+ ATPase activity, increased in DHEA treated rats in both the age groups. In terms of per cent increase, 22 months old animals showed significant increase in Na+ K+ ATPase activity in the synaptosomal fraction of all the four brain regions than in 12 months old DHEA-treated rats. This showed that exogenous DHEA modulated the activity of Na+ K+ ATPase and also protected the age-related loss of membrane integrity and functions. It was concluded that exogenous DHEA might be beneficial in terms of neuroprotection against age-related loss of Na+ K+ ATPase mediated brain functions like learning and memory.

3.
J Biosci ; 2005 Sep; 30(4): 483-90
Article in English | IMSEAR | ID: sea-110765

ABSTRACT

Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on anti-oxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose (P less than 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase (P less than 0.01, P less than 0.001 and P less than 0.01), increased levels of GPx and MDA (P less than 0.01 and P less than 0.001) and decreased membrane fluidity (P less than 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.


Subject(s)
Animals , Brain/drug effects , Cell Membrane/drug effects , Diabetes Mellitus, Experimental/drug therapy , Female , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar , Seeds , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Trace Elements/pharmacology , Trigonella/metabolism , Vanadates/pharmacology , Vanadium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL