Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 525-9, 2013.
Article in English | WPRIM | ID: wpr-636552

ABSTRACT

The purpose of this study was to investigate the molecular mechanism by which miR-21 and its target genes mediate radiation resistance of glioblastoma cells. Real-time PCR was employed to detect miR-21 expression in normal brain tissues, glioblastoma tissues and glioblastoma cell lines (A172, T98G and U87MG). T98G cells were transfected with anti-miR-21 oligonucleotides, or plasmids containing PDCD4 or hMSH2 (PDCD4-pcDNA3 and hMSH2-pcDNA3). The survival curve was obtained to investigate the sensitivity of T98G cells to radiation. Cell apoptosis was measured by using the Caspase-3/7 kit and cell cycle by flow cytometry. Western blotting was performed to detect the expression of hMSH2 and PDCD4 in miR-21-inhibiting T98G cells. The results showed that miR-21 expression in glioblastoma cells and tissues was conversely associated with the radiation sensitivity. Over-expression of miR-21 resulted in radiation resistance, while knockdown of miR-21 led to higher sensitivity of glioblastma cells to radiation. After miR-21 knockdown, the apoptosis of T98G cells was significantly increased and the G2 phase arrest was more significant. In addition, miR-21 knockdown increased the expression of endogenous PDCD4 and hMSH2, which contributed to the apoptosis and G2 arrest of T98G cells. The findings suggested that miR-21 may mediate the resistance of glioblastoma cells against radiation via its target genes PDCD4 and hMSH2. MiR-21 and its target genes may be used as potential molecular targets for clinical radiotherapy sensitization in the future.

2.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 525-529, 2013.
Article in English | WPRIM | ID: wpr-251437

ABSTRACT

The purpose of this study was to investigate the molecular mechanism by which miR-21 and its target genes mediate radiation resistance of glioblastoma cells. Real-time PCR was employed to detect miR-21 expression in normal brain tissues, glioblastoma tissues and glioblastoma cell lines (A172, T98G and U87MG). T98G cells were transfected with anti-miR-21 oligonucleotides, or plasmids containing PDCD4 or hMSH2 (PDCD4-pcDNA3 and hMSH2-pcDNA3). The survival curve was obtained to investigate the sensitivity of T98G cells to radiation. Cell apoptosis was measured by using the Caspase-3/7 kit and cell cycle by flow cytometry. Western blotting was performed to detect the expression of hMSH2 and PDCD4 in miR-21-inhibiting T98G cells. The results showed that miR-21 expression in glioblastoma cells and tissues was conversely associated with the radiation sensitivity. Over-expression of miR-21 resulted in radiation resistance, while knockdown of miR-21 led to higher sensitivity of glioblastma cells to radiation. After miR-21 knockdown, the apoptosis of T98G cells was significantly increased and the G(2) phase arrest was more significant. In addition, miR-21 knockdown increased the expression of endogenous PDCD4 and hMSH2, which contributed to the apoptosis and G(2) arrest of T98G cells. The findings suggested that miR-21 may mediate the resistance of glioblastoma cells against radiation via its target genes PDCD4 and hMSH2. MiR-21 and its target genes may be used as potential molecular targets for clinical radiotherapy sensitization in the future.


Subject(s)
Humans , Apoptosis Regulatory Proteins , Genetics , Cell Line, Tumor , Glioblastoma , Genetics , MicroRNAs , Genetics , MutS Homolog 2 Protein , Genetics , RNA-Binding Proteins , Genetics , Radiation Tolerance , Genetics
3.
Chinese Medical Journal ; (24): 2405-2411, 2009.
Article in English | WPRIM | ID: wpr-266056

ABSTRACT

<p><b>BACKGROUND</b>MicroRNAs (miRNAs) are small noncoding regulatory RNAs whose aberrant expression may be observed in many malignancies. However, few data are yet available on human primary medulloblastomas. This work aimed to identify that whether miRNAs would be aberrantly expressed in tumor tissues compared with non-tumorous cerebellum tissues from same patients, and to explore a possible role during carcinogenesis.</p><p><b>METHODS</b>A high throughput microRNA microarray was performed in human primary medulloblastoma specimens to investigate differentially expressed miRNAs, and some miRNAs were validated using real-time quantitative RT-PCR method. In addition, the predicted target genes for the most significantly down- or up-regulated miRNAs were analyzed by using a newly modified ensemble algorithm.</p><p><b>RESULTS</b>Nine miRNA species were differentially expressed in medulloblastoma specimens versus normal non-tumorous cerebellum tissues. Of these, 4 were over expressed and 5 were under expressed. The changes ranged from 0.02-fold to 6.61-fold. These findings were confirmed using real-time quantitative RT-PCR for most significant deregulated miRNAs (miR-17, miR-100, miR-106b, and miR-218) which are novel and have not been previously published. Interestingly, most of the predicted target genes for these miRNAs were involved in medulloblastoma carcinogenesis.</p><p><b>CONCLUSIONS</b>MiRNAs are differentially expressed between human medulloblastoma and non-tumorous cerebellum tissue. MiRNAs may play a role in the tumorigenesis of medulloblastoma and maybe serve as potential targets for novel therapeutic strategies in future.</p>


Subject(s)
Adolescent , Child , Child, Preschool , Female , Humans , Male , Medulloblastoma , Genetics , MicroRNAs , Genetics , Metabolism , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
4.
Acta Academiae Medicinae Sinicae ; (6): 268-274, 2008.
Article in Chinese | WPRIM | ID: wpr-270708

ABSTRACT

<p><b>OBJECTIVE</b>To detect the expression of CBX7 in human glioma and investigate the potential regulatory effect of abnormally expressed microRNAs on CBX7 expression.</p><p><b>METHODS</b>Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and Western blot were applied to detect the expression pattern of CBX7 in 2 human normal brain tissues, 9 glioma tissues, and 3 glioma cell lines. Miranda algorithm and Ensemble Machine Learning algorithm were combined to predict miRNAs that target human CBX7. The expression of miR-9 in those tissues and cell lines were detected by real-time PCR. After miR-9 overexpression in 293ET and miR-9 knock-down in T98G, luciferase assay and Western blot were used to confirm the effect of miR-9 on CBX7 expression. MTT assay and flow cytometry were applied to detect the effect of miR-9 knock-down on T98G cells.</p><p><b>RESULTS</b>No obvious difference in the CBX7 mRNA level between normal and tumor tissues was observed, while the protein level of CBX7 was abrogated or markedly reduced in glioma tissues and cell lines. Several miRNAs including miR-9 may target CBX7 by bioinformatics prediction. MiR-9 was up-regulated in glioma tissues and cell lines. In 293ET cell, luciferase activity of CBX7-3'UTR reporter was decreased to 24% after miR-9 overexpression. After miR-9 knock-down in T98G cell, the luciferase activity was increased by 1.8 fold and there was no change of CBX7 mRNA, while the protein level of endogenous CBX7 was significantly increased. The number of survival T98G cells increased and cells in G1 phase decreased after miR-9 knock-down.</p><p><b>CONCLUSION</b>In human glioma, CBX7 is down-regulated by the inhibition of miR-9 at posttranscriptional level.</p>


Subject(s)
Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Male , Middle Aged , Young Adult , Algorithms , Blotting, Western , Brain , Metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Flow Cytometry , Glioma , Genetics , Metabolism , In Vitro Techniques , MicroRNAs , Genetics , Physiology , Polycomb Repressive Complex 1 , Repressor Proteins , Genetics , Metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL