Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-1043963

ABSTRACT

Background@#The identification of idiopathic inflammatory myopathies (IIMs) requires a comprehensive analysis involving clinical manifestations and histological findings. This study aims to provide insights into the histopathological and immunohistochemical aspects of IIMs. @*Methods@#This retrospective case series involved 56 patients diagnosed with IIMs at the Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, from 2019 to 2023. The histology and immunohistochemical expression of HLA-ABC, HLA-DR, C5b-9, Mx1/2/3, and p62 were detected. @*Results@#We examined six categories of inflammatory myopathy, including immunemediated necrotizing myopathy (58.9%), dermatomyositis (DM; 23.2%), overlap myositis (8.9%), antisynthetase syndrome (5.4%), inclusion body myositis (IBM; 1.8%), and polymyositis (1.8%). The average age of the patients was 49.7 ± 16.1 years, with a female-to-male ratio of 3:1. Inflammatory cell infiltration in the endomysium was present in 62.5% of cases, perifascicular atrophy was found in 17.8%, and fiber necrosis was observed in 42 cases (75.0%). Rimmed vacuoles were present in 100% of cases in the IBM group. Immunohistochemistry showed the following positivity rates: HLA-ABC (89.2%), HLA-DR (19.6%), C5b-9 (57.1%), and Mx1/2/3 (10.7%). Mx1/2/3 expression was high in DM cases. p62 vacuole deposits were noted in the IBM case. The combination of membrane attack complex and major histocompatibility complex I helped detect IIMs in 96% of cases. @*Conclusions@#The diagnosis of IIMs and their subtypes should be based on clinical features and histopathological characteristics. Immunohistochemistry plays a crucial role in the diagnosis and differentiation of these subgroups.

2.
Article in English | WPRIM | ID: wpr-1045012

ABSTRACT

Diabetes mellitus is characterized by hyperglycemic due to impaired insulin secretion or resistance. In our search for anti-diabetic agents, we found that a 70% EtOH extract of Rubus cochinchinensis(Tratt) enhances glucose uptake in 3T3-L1 adipocytes. R. cochinchinensis is predominantly found in East Asia, particularly in Vietnam, Laos, Cambodia, and southern in China. Despite its widespread distribution, there have been few studies on its bioactivity or chemical constituents. In this study, activity-guided fractionation of 70% EtOH extract from the leaves of R. cochinchinensis resulted in the isolation of one new ursane-type glycoside, 3-O-β-acetyl-28-O-β-D-glucopyranosyl-rotundioic acid (1), along with four known compounds (2–5). The structures of these compounds were elucidated using 1D and 2D NMR and HRESIMS data. Notably, compound 4 significantly increased the uptake level of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocytes. This study suggests the potential of R. cochinchinensis as a promising medicinal plant for treating diabetes via glucose uptake.

3.
Article in English | WPRIM | ID: wpr-1045017

ABSTRACT

Based on our previous study, we evaluated the modulatory effects on LPS-induced IL-1β and IL-10 cytokine production in RAW 264.7 macrophages of several medicinal herbs, including P. scandens. The results showed that P. scandens extract showed significant effects on LPS-induced IL-1β and IL-10 cytokine production in RAW 264.7 macrophages. Therefore, in the current research, we focused on the P. scandens sample. Cytokine production effects bioassay-guided isolation of ethyl acetate fraction of 70% ethanol extract from roots of Paramignya scandens (XL) obtained seven coumarins (1–7). Their chemical structures were identified using spectroscopic methods (NMR and MS) and compared with those previously published data to be xanthyletin (1), luvangetin (2), clausenidin (3), nordentatin (4), dentatin (5), clausarin (6), and anisocoumarin E (7). This study represents the first report on the presence of compounds 3, 6, and 7 in the Paramignya genus and compounds 1 and 2 in XL. All isolates (1–7) exhibited significant inhibition of LPS-induced interleukin (IL)-1β production compared to the LPS 5 ng/mL control group, with IL-1β concentrations ranging from 42.77 to 69.76 pg/mL. Additionally, the IL-10 production induced by compounds 1‒7 in LPS-stimulated RAW 264.7 macrophages ranged from 175.98 to 321.56 pg/mL, demonstrating a marked increase as compared to the LPS 5 ng/mL control group. The stimulatory effect on IL-10 production and inhibitory effect on IL-1β production of compounds 1, 2, and 6 gradually increased with the test concentration in both RAW 264.7 macrophages and LPS-induced RAW 264.7 macrophages. Compounds 1, 2, and 6 inhibited IL-1β production in LPS-induced RAW 264.7 macrophages with IC 50 values of 10.70 ± 1.18 µM, 8.57 ± 1.05 µM, and 17.43 ± 1.05 µM, respectively. These findings highlight the potential of all the compounds derived from P. scandens roots in inducing IL-1β and IL-10 cytokines activity in LPS-stimulated RAW 264.7 macrophages. The results contributed to expanding the knowledge of the chemistry and bioactivities of P. scandens and provided valuable data for future investigations on this species.

SELECTION OF CITATIONS
SEARCH DETAIL