Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 345-356, 2019.
Article in English | WPRIM | ID: wpr-761801

ABSTRACT

Docosahexaenoic acid (DHA), an omega-3-fatty acid, modulates multiple cellular functions. In this study, we addressed the effects of DHA on human umbilical vein endothelial cell calcium transient and endothelial nitric oxide synthase (eNOS) phosphorylation under control and adenosine triphosphate (ATP, 100 µM) stimulated conditions. Cells were treated for 48 h with DHA concentrations from 3 to 50 µM. Calcium transient was measured using the fluorescent dye Fura-2-AM and eNOS phosphorylation was addressed by western blot. DHA dose-dependently reduced the ATP stimulated Ca²⁺-transient. This effect was preserved in the presence of BAPTA (10 and 20 µM) which chelated the intracellular calcium, but eliminated after withdrawal of extracellular calcium, application of 2-aminoethoxy-diphenylborane (75 µM) to inhibit store-operated calcium channel or thapsigargin (2 µM) to delete calcium store. In addition, DHA (12 µM) increased ser1177/thr495 phosphorylation of eNOS under baseline conditions but had no significant effect on this ratio under conditions of ATP stimulation. In conclusion, DHA dose-dependently inhibited the ATP-induced calcium transient, probably via store-operated calcium channels. Furthermore, DHA changed eNOS phosphorylation suggesting activation of the enzyme. Hence, DHA may shift the regulation of eNOS away from a Ca²⁺ activated mode to a preferentially controlled phosphorylation mode.


Subject(s)
Humans , Adenosine Triphosphate , Adenosine , Blotting, Western , Calcium Channels , Calcium , Endothelial Cells , Nitric Oxide Synthase Type III , Phosphorylation , Thapsigargin , Umbilical Veins
SELECTION OF CITATIONS
SEARCH DETAIL