Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Type of study
Language
Year range
1.
Chinese Journal of Applied Physiology ; (6): 109-112, 2006.
Article in Chinese | WPRIM | ID: wpr-254591

ABSTRACT

<p><b>AIM</b>To observe the dynamic changes of heme oxygenase-1 (HO-1) mRNA and protein express in subfornical organ in rats with experimental allergic encephalomyelitis (EAE) to confirm that SFO is one of the sites for blood-bearing signaling molecules entering into brain.</p><p><b>METHODS</b>EAE was induced by CFA-GPSCH on Wistar rats, we observed the levels of HO-1 mRNA and its protein expression with immunohistochemistry and in situ hybridization technology on 1 d, 7 d, 14 d, and 21 d after EAE induction in SFO of rats. The relationship between HO-1 and symptoms of EAE was also investigated.</p><p><b>RESULTS</b>The expression levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On 1 d after induction of EAE, positive cells of HO-1 mRNA and its protein expression were observed at SFO, but the labeled cells were rarely seen in the other brain regions. On 7 d, the positive cells increased markedly. On 14 d the levels of HO-1 mRNA and its protein expression in the brains reached the peak, the positive cells of HO-1 were mainly located at the choroid plexuses and SFO, as well as the regions around "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The changes of incidence, symptom, reduction of the body weight, and pathology lesions of EAE in rat brains were the most significant. On 21 d, the levels of HO-1 mRNA and its protein expression reduced gradually, which was in parallel with remitted symptoms of EAE. When a specific inhibitor of HO-1, Snpp9, was applied, the symptoms and pathological lesions of EAE in brains were mitigated markedly.</p><p><b>CONCLUSION</b>SFO may be one of the earliest sites for blood-bearing signaling molecules entering into brain. The dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brains. Application of some inhibitors of HO-1 may be one of potential therapeutic methods for prevention and treatment of EAE.</p>


Subject(s)
Animals , Female , Rats , Encephalomyelitis, Autoimmune, Experimental , Metabolism , Heme Oxygenase (Decyclizing) , Genetics , Metabolism , RNA, Messenger , Genetics , Rats, Wistar , Subfornical Organ , Metabolism
2.
Acta Physiologica Sinica ; (6): 579-584, 2004.
Article in Chinese | WPRIM | ID: wpr-352732

ABSTRACT

In order to investigate the role of heme oxygenase-1 (HO-1) in the molecular mechanism of experimental allergic encephalomyelitis (EAE), which was induced by guinea pig spinal cord homogenate + complete freund adjuvant on Wistar rats, we observed the gene of HO-1 and its protein expression with reverse transcriptase polymerase chain reaction(RT-PCR) and immunohistochemistry 1, 7, 14, and 21 d after EAE induction in rats. The relationship between HO-1 and the symptoms of EAE was also observed. The results showed that the levels of HO-1 mRNA and its protein expression were very low in the brains of the control group, whereas they were enhanced gradually with pathological course in the brain and onsets of symptoms, signs of EAE. On day 7, the level of HO-1 mRNA reached the peak, but the expression level of HO-1 protein in the brains reached the peak on day 14. The immunoreactive cells of HO-1 were mainly located at the choroid plexuses and subfornical organ (SFO), as well as in regions around the "sleeve-like" lesion foci, all of which were coincident with the locations of lesions of EAE. The levels of HO-1 mRNA and its protein expression were lowered gradually on day 21, which were in parallel with the severities of symptoms and signs of EAE. After a specific inhibitor of HO-1, Snpp-9, was applied, both of the symptoms and pathological lesions of EAE in the rat brains were mitigated markedly. Therefore, these results may suggest that the dynamic changes of HO-1 mRNA and its protein expression are in parallel with the changes of symptoms and pathological lesions of EAE in the brain. In conclusion, the levels of HO-1 mRNA and its protein expression in brains may play an important role in the pathogenesis of EAE, and application of inhibitors of HO-1 may be one of the potential therapeutic ways for the prevention and treatment of EAE.


Subject(s)
Animals , Female , Rats , Brain , Metabolism , Encephalomyelitis, Autoimmune, Experimental , Genetics , Heme Oxygenase (Decyclizing) , Genetics , Heme Oxygenase-1 , RNA, Messenger , Genetics , Rats, Wistar , Subfornical Organ , Metabolism , Pathology
3.
Acta Physiologica Sinica ; (6): 58-64, 2003.
Article in Chinese | WPRIM | ID: wpr-318942

ABSTRACT

To investigate the role of activated nuclear factor-kappaB (NF-kappaB) in experimental allergic encephalomyelitis (EAE), the activity and protein expression of NF-kappaB p65 in rat brain tissues, which were extracted from EAE rats at 1, 7, 14 and 21 d respectively after EAE was induced by CFA-GPSCH, were measured with electrophoretic mobility shift assay and immunohistochemistry. The relationship between activated NF-kappaB and symptoms of EAE was also investigated. The results showed that protein expression level and the activity of NF-kappaB were very low in the brain of the control group. After EAE was induced, the activity of NF-kappaB and the level of the protein expression in the brains increased gradually with the development of symptoms and brain pathology of EAE. On d 14, both the activity and the level of protein expression in the brains reached a peak, the positive cells of NF-kappaB were mainly located at the choroid plexuses and subfornical organ, as well as around the regions of sleeve-like lesion foci, which were coincident with the locations of lesions of EAE. The incidence, symptoms, reduction of the body weight and pathology of EAE rats brains at the above locations were most significant. On d 21 the activity of NF-kappaB and level of the protein expression reduced gradually, which was in parallel with a gradual alleviation of the symptoms of EAE rats. After a specific inhibitor of NF-kappaB, PDTC was applied, the symptoms and pathological lesions of EAE rat brain were mitigated markedly. The above results indicate that the dynamic changes in the activity and protein expression of NF-kappaB were in parallel with the changes in symptoms and pathological lesion of EAE rat brains. In conclusion, the activated NF-kappaB in the brain may play a critical role in the pathogenesis of EAE, and application of some inhibitors of NF-kappaB, such as PDTC, may be one of the effective therapeutic methods for prevention and treatment of EAE.


Subject(s)
Animals , Female , Rats , Brain , Metabolism , Encephalomyelitis, Autoimmune, Experimental , Metabolism , Pyrrolidines , Pharmacology , Rats, Wistar , Thiocarbamates , Pharmacology , Transcription Factor RelA , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL