Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Ophthalmology ; (12): 774-778, 2019.
Article in Chinese | WPRIM | ID: wpr-796585

ABSTRACT

Objective@#To establish a simple method for isolation, purification and cultivation of primary retinal microvascular pericytes (RMPs) from mice.@*Methods@#Retinas were isolated from mice following with mechanical morcel, enzymatic digestion and filtration.The retinal fragments were incubated with low glucose DMEM with 20% fetal bovine serum after 24 hours pre-incubation.Differential digestion was used for purification of primary RMPs.Morphological examination of cells was performed by phase contrast microscopy, and further characterization was analyzed by immunocytochemistry.Functional assay was evaluated by the pericytes-endothelial cells (ECs) co-culture system.The treatment and use of experimental animals followed the regulations on the administration of experimental animals promulgated by the state science and technology commission.@*Results@#Cells migrated out of fragments after 24 hours of incubation, and developed into small or large colonies gradually.The cells and their subpassages presented typical pericyte morphology with large irregular triangular cell bodies and multiple long processes.No contact inhibition was observed.Most cells uniformly expressed the cellular markers α-smooth muscle actin (α-SMA) and platelet-derived growth factor receptor-β (PDGFR-β), a few cells expressed the cellular markers glial fibrillary acidic protein (GFAP), but no cell expressed von Willebrand factor (vWF). The purity rate of RMPs was up to 97%.In the co-culture system, RMPs directly contacted with ECs to form the capillary-like cords in vitro.@*Conclusions@#A simple method for the isolation, purification cultivation of mouse RMPs is established, and active RMPs can be readily obtained by this method.

2.
Chinese Journal of Experimental Ophthalmology ; (12): 774-778, 2019.
Article in Chinese | WPRIM | ID: wpr-790160

ABSTRACT

Objective To establish a simple method for isolation, purification and cultivation of primary retinal microvascular pericytes ( RMPs) from mice. Methods Retinas were isolated from mice following with mechanical morcel,enzymatic digestion and filtration. The retinal fragments were incubated with low glucose DMEM with 20% fetal bovine serum after 24 hours pre-incubation. Differential digestion was used for purification of primary RMPs. Morphological examination of cells was performed by phase contrast microscopy, and further characterization was analyzed by immunocytochemistry. Functional assay was evaluated by the pericytes-endothelial cells ( ECs) co-culture system. The treatment and use of experimental animals followed the regulations on the administration of experimental animals promulgated by the state science and technology commission. Results Cells migrated out of fragments after 24 hours of incubation, and developed into small or large colonies gradually. The cells and their subpassages presented typical pericyte morphology with large irregular triangular cell bodies and multiple long processes. No contact inhibition was observed. Most cells uniformly expressed the cellular markers α-smooth muscle actin (α-SMA) and platelet-derived growth factor receptor-β( PDGFR-β) ,a few cells expressed the cellular markers glial fibrillary acidic protein ( GFAP) ,but no cell expressed von Willebrand factor ( vWF) . The purity rate of RMPs was up to 97%. In the co-culture system,RMPs directly contacted with ECs to form the capillary-like cords in vitro. Conclusions A simple method for the isolation, purification cultivation of mouse RMPs is established, and active RMPs can be readily obtained by this method.

3.
Chinese Journal of Plastic Surgery ; (6): 513-518, 2019.
Article in Chinese | WPRIM | ID: wpr-805190

ABSTRACT

Adipose-derived stem cells (ADSCs) are adult mesenchymal stem cells, which are derived from adipose tissue. ADSCs have broad applications, due to the potential of multiple differentiation, easy sampling, wide sources and high proliferation capacity in vitro. Many researches demonstrated that ADSCs have significant effects on anti-aging. Its mechanism and therapeutic effects also become a hot topic in recent years. This review summarized the biological characteristics of ADSCs, the mechanism of skin aging, the anti-aging mechanism of ADSCs, so as to provide reference for the use of ADSCs for skin anti-aging in the future.

SELECTION OF CITATIONS
SEARCH DETAIL