Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Environmental and Occupational Medicine ; (12): 323-329, 2024.
Article in Chinese | WPRIM | ID: wpr-1013441

ABSTRACT

Background The active metabolite of benzo[a]pyrene (BaP), 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE), can form adducts with DNA, but the spectrum of BPDE-DNA adducts is unclear. Objective To identify the distribution of BPDE adduct sites and associated genes at the whole-genome level by chromatin immunoprecipitation followed by sequencing (ChIP-Seq), and serve as a basis for further exploring the toxicological mechanisms of BaP. Methods Human bronchial epithelial-like cells (16HBE) were cultured to the fourth generation inthe logarithmic growth phase. Cells were harvested and added to chromatin immunoprecipitation lysis buffer. The lysate was divided into experimental and control groups. The experimental group received a final concentration of 20 μmol·L−1 BPDE solution, while the control group received an equivalent volume of dimethyl sulfoxide solution. The cells were then incubated at 37 °C for 24 h. Chromatin fragments of 100-500 bp were obtained through sonication. BPDE-specific antibody (anti-BPDE 8E11) was used to enrich DNA fragments with BPDE adducts. High-throughput sequencing was conducted to detect BPDE adduct sites. The top 1000 peak sequences were subjected to motif analysis using MEME and DREME software. BPDE adduct target genes at the whole-genome level were annotated, and Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of BPDE adduct target genes were conducted using bioinformatics techniques. Results The high-throughput sequencing detected a total of 842 BPDE binding sites, distributed across various chromosomes. BPDE covalently bound to both coding and non-coding regions of genes, with 73.9% binding sites located in intergenic regions, 19.6% in intronic regions, and smaller proportions in upstream 2 kilobase, exonic, downstream 2 kilobase, and 5' untranslated regions. Regarding the top 1000 peak sequences, four reliable motifs were identified, revealing that sites rich in adenine (A) and guanine (G) were prone to binding. Through the enrichment analysis of binding sites, a total of 199 BPDE-adduct target genes were identified, with the majority located on chromosomes 1, 5, 7, 12, 17, and X. The GO analysis indicated that these target genes were mainly enriched in nucleic acid and protein binding, participating in the regulation of catalytic activity, transport activity, translation elongation factor activity, and playing important roles in cell division, differentiation, motility, substance transport, and information transfer. The KEGG analysis revealed that these target genes were primarily enriched in pathways related to cardiovascular diseases, cancer, and immune-inflammatory responses. Conclusion Using ChIP-Seq, 199 BPDE adduct target genes at genome-wide level are identified, impacting biological functions such as cell division, differentiation, motility, substance transport, and information transfer. These genes are closely associated with cardiovascular diseases, tumors, and immune-inflammatory responses.

2.
Journal of Environmental and Occupational Medicine ; (12): 433-440, 2023.
Article in Chinese | WPRIM | ID: wpr-972382

ABSTRACT

Background Benzo[a]pyrene (BaP) has neurotoxicity, which can induce the loss of hippocampal neurons in humans and animals and lead to spatial learning and memory dysfunction, but its mechanism is still unclear. Objective To observe the ferroptosis of mouse hippocampal neuron HT22 cells induced by 7,8-dihydroxy-9,10-epoxybenzo[a]pyrene (BPDE), an active metabolite of BaP, and to explore its potential mechanism, so as to provide a basis for the study of BaP neurotoxicity mechanism. Method Mouse hippocampal neuron HT22 cells were selected and divided into four groups: solvent control group and low, medium, and high concentration BPDE exposure groups (0.25, 0.50, and 0.75 μmol·L−1). Cell survival was detected by CCK8 method. Cell morphology and ultrastructure were observed under light and electron microscopes. The levels of reactive oxygen species (ROS) and Fe2+ were detected by fluorescence probe method. Iron, 4-hydroxynonenoic acid (4-HNE), malondialdehyde (MDA), glutathione (GSH), and glutathione peroxidase (GSH-PX) levels were detected with commercial kits. The expression levels of acyl-CoA synthase long chain family member 4 (ACSL4), cyclooxygenase 2 (COX2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) were detected by Western blotting. After interventions with ferroptosis inhibitors 20 μmol·L−1 deferoxamine (DFO) and 10 μmol·L−1 ethyl 3-amino-4-cyclohexylaminobenzoate (Fer-1), the cell survival rate of each BPDE exposure group and the changes of the ferroptosis characteristic indicators and protein expression levels were observed. Results With the increase of BPDE concentration, the survival rate of HT22 cells decreased gradually, and the survival rate of each BPDE group was significantly lower than that of the solvent control group (P<0.01). Under light microscope, the number of cells in the high concentration BPDE group was significantly reduced, and atrophic cells and reduced synapses were recorded. Under electron microscope, the HT22 cells in the high concentration BPDE group showed mitochondrial shrinkage, decreased crista, and increased mitochondrial membrane density. Compared with the solvent control group, the levels of intracellular lipid ROS, Fe2+, 4-HNE, and MDA significantly increased in the high concentration group (P<0.01), the GSH and GSH-PX levels were significantly decreased (P<0.01), the protein expression levels of ASCL4 and COX2 were significantly increased (P<0.01), and the protein expression levels of SCL7A11 and GPX4 were significantly decreased (P<0.01). The ferroptosis inhibitors DFO and Fer-1 significantly reversed the cell survival rate (P<0.01), the ferroptosis characteristic indicators (ROS, Fe2+, 4-HNE, MDA, GSH, and GSH-PX levels) (P<0.01), and the expression levels of ferroptosis-related proteins (ACSL4, COX2, SLC7A11, and GPX4) (P<0.01) in the high concentration BPDE group. Conclusion BPDE can induce ferroptosis in mouse hippocampal neuron HT22 cells, which may be related to the inhibition of SLC7A11/GSH/GPX4 axis and the induction of iron metabolism disorder.

SELECTION OF CITATIONS
SEARCH DETAIL