Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Clinical Hepatology ; (12): 2643-2650, 2023.
Article in Chinese | WPRIM | ID: wpr-998821

ABSTRACT

‍ ObjectiveTo investigate the protective effect of safranal against sepsis-related liver injury (SRLI) induced by lipopolysaccharide (LPS) in mice and its mechanism. MethodsA total of 32 experimental male C57BL/6 mice were divided into control group, single drug group, model group, and treatment group using the simple random method, with 8 mice in each group. The mice in the single drug group and the treatment group were intraperitoneally injected with safranal (60 mg/kg) for 7 days of pretreatment, and the mice in the model group and the treatment group were intraperitoneally injected with LPS (10 mg/kg) to induce acute liver injury. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured; HE staining was used to observe liver tissue sections; immunohistochemistry was used to analyze the expression of the downstream protein heme oxygenase-1 (HO-1) in the signal pathway; TUNEL was used to analyze the apoptosis of hepatocytes; Western blot was used to measure the expression of total proteins (nuclear factor erythroid 2-related factor 2 [Nrf-2] and HO-1) in liver tissue. The human liver cell line L02 was pretreated with safranal (100 μmol/L), followed by induction of acute hepatocellular injury with LPS (100 ng/mL), and DCFH-DA fluorescent labeling was used to detect reactive oxygen species (ROS). ResultsAfter safranal pretreatment, the treatment group had significantly lower levels of ALT and AST than the model group (both P<0.001), with a relatively intact pseudolobular structure and a smaller necrotic area in the liver. Compared with the model group, the treatment group had significant increases in the expression levels of Nrf2 and HO-1 in liver tissue after safranal+LPS treatment (both P<0.001), and immunohistochemistry showed that safranal pretreatment increased the number of HO-1-positive cells. In the cell model of LPS-induced acute liver injury, the treatment group had a significant reduction in the production of ROS compared with the model group. ConclusionSafranal can exert a protective effect against SRLI induced by LPS in mice through the Nrf2/HO-1 pathway.

SELECTION OF CITATIONS
SEARCH DETAIL