Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Diabetes & Metabolism Journal ; : 859-868, 2023.
Article in English | WPRIM | ID: wpr-1000267

ABSTRACT

Background@#Prediabetes leads to declines in physical function in older adults, but the impact of prediabetes progression or regression on physical function is unknown. This study assessed this longitudinal association, with physical function objectivelymeasured by grip strength, walking speed, and standing balance, based on the Health and Retirement Study enrolling United States adults aged >50 years. @*Methods@#Participants with prediabetes were followed-up for 4-year to ascertain prediabetes status alteration (maintained, regressed, or progressed), and another 4-year to assess their impacts on physical function. Weak grip strength was defined as <26 kg for men and <16 kg for women, slow walking speed was as <0.8 m/sec, and poor standing balance was as an uncompleted fulltandem standing testing. Logistic and linear regression analyses were performed. @*Results@#Of the included 1,511 participants with prediabetes, 700 maintained as prediabetes, 306 progressed to diabetes, and 505 regressed to normoglycemia over 4 years. Grip strength and walking speed were declined from baseline during the 4-year followup, regardless of prediabetes status alteration. Compared with prediabetes maintenance, prediabetes progression increased the odds of developing weak grip strength by 89% (95% confidence interval [CI], 0.04 to 2.44) and exhibited larger declines in grip strength by 0.85 kg (95% CI, –1.65 to –0.04). However, prediabetes progression was not related to impairments in walking speed or standing balance. Prediabetes regression also did not affect any measures of physical function. @*Conclusion@#Prediabetes progression accelerates grip strength decline in aging population, while prediabetes regression may not prevent physical function decline due to aging.

2.
Diabetes & Metabolism Journal ; : 476-485, 2022.
Article in English | WPRIM | ID: wpr-924925

ABSTRACT

Background@#Creatinine-to-cystatin C ratio is recently suggested to be a surrogate marker for sarcopenia. However, little is known about its association with diabetes. This study aimed to fill in this gap based on a large-scale prospective cohort. @*Methods@#A population-based representative sample of 5,055 participants aged ≥45 years from the China Health and Retirement Longitudinal Study was enrolled between 2011 and 2012 and followed at least once during the subsequent surveys at 2013, 2015, or 2018. Creatinine-to-cystatin C ratio was calculated and normalized by body weight. Incident diabetes was ascertained by plasma glucose, glycosylated hemoglobin, self-reported history, or use of anti-diabetic drugs. Logistic regression analysis and mediation analysis were employed. @*Results@#During follow-up, 634 participants developed diabetes. The risk of diabetes was gradually and significantly decreased with increased normalized creatinine–cystatin C ratio. The multivariable-adjusted odds ratio for diabetes was 0.91 (95% confidence interval, 0.83 to 0.99) per 1 standard deviation higher of normalized creatinine-to-cystatin C ratio, and this relationship remained significant after controlling for muscle strength. The risk reduction in diabetes was significantly larger in participants with normal-weight and high normalized creatinine-to-cystatin C ratio compared with those with overweight/obesity and high normalized creatinine-to-cystatin C ratio (Pinteraction=0.01). Insulin resistance and inflammation appeared to be key mediators accounting for the observed relationship between normalized creatinine-to-cystatin C ratio and risk of diabetes, with their mediating effect being 93.1% and 22.0%, respectively. @*Conclusion@#High normalized creatinine-to-cystatin C ratio is associated with reduced risk of diabetes in middle-aged and older adults.

3.
Journal of Neurogastroenterology and Motility ; : 413-422, 2019.
Article in English | WPRIM | ID: wpr-765952

ABSTRACT

BACKGROUND/AIMS: Nutrient-induced gut hormone release (eg, cholecystokinin [CCK]) and the modulation of gut motility (particularly pyloric stimulation) contribute to the regulation of acute energy intake. Non-caloric bitter compounds, including quinine, have recently been shown in cell-line and animal studies to stimulate the release of gastrointestinal hormones by activating bitter taste receptors expressed throughout the gastrointestinal tract, and thus, may potentially suppress energy intake without providing additional calories. This study aims to evaluate the effects of intraduodenally administered quinine on antropyloroduodenal pressures, plasma CCK and energy intake. METHODS: Fourteen healthy, lean men (25 ± 5 years; BMI: 22.5 ± 2.0 kg/m²) received on 4 separate occasions, in randomized, double-blind fashion, 60-minute intraduodenal infusions of quinine hydrochloride at doses totaling 37.5 mg (“Q37.5”), 75 mg (“Q75”) or 225 mg (“Q225”), or control (all 300 mOsmol). Antropyloroduodenal pressures (high-resolution manometry), plasma CCK (radioimmunoassay), and appetite perceptions/gastrointestinal symptoms (visual analog questionnaires) were measured. Ad libitum energy intake (buffet-meal) was quantified immediately post-infusion. Oral quinine taste-thresholds were assessed on a separate occasion using 3-alternative forced-choice procedure. RESULTS: All participants detected quinine orally (detection-threshold: 0.19 ± 0.07 mmol/L). Intraduodenal quinine did not affect antral, pyloric or duodenal pressures, plasma CCK (pmol/L [peak]; control: 3.6 ± 0.4, Q37.5: 3.6 ± 0.4, Q75: 3.7 ± 0.3, Q225: 3.9 ± 0.4), appetite perceptions, gastrointestinal symptoms or energy intake (kcal; control: 1088 ± 90, Q37.5: 1057 ± 69, Q75: 1029 ±70, Q225: 1077 ± 88). CONCLUSION: Quinine, administered intraduodenally over 60 minutes, even at moderately high doses, but low infusion rates, does not modulate appetite-related gastrointestinal functions or energy intake.


Subject(s)
Animals , Humans , Male , Appetite , Cholecystokinin , Energy Intake , Gastrointestinal Hormones , Gastrointestinal Tract , Plasma , Pylorus , Quinine
SELECTION OF CITATIONS
SEARCH DETAIL