Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Noise Health ; 2005 Jan-Mar; 7(26): 3-9
Article in English | IMSEAR | ID: sea-122137

ABSTRACT

From 1953 to 1995 the usage rate of hearing protective devices (HPD) was tracked at a paper mill, a shipyard, and in selected areas of forestry work. For each work period, observations were made of HPD use among workers. In the paper mill, the usage rate increased steadily from 1965. In 1990, 39% of workers used HPDs full-time. At the shipyard, the usage rate remained low up to the mid-1980s, but thereafter the proportion of full-time users rose to 70%. A similar trend was noted in forest workers, with the full-time use at 97% by the 1990s. Due to the increased usage rate in all measured industries, the mean effective noise level at the ear has decreased to below 85 dB.


Subject(s)
Cross-Sectional Studies , Ear Protective Devices , Finland , Forestry , Hearing Loss/prevention & control , Humans , Longitudinal Studies , Occupational Exposure
2.
Noise Health ; 2005 Jan-Mar; 7(26): 47-53
Article in English | IMSEAR | ID: sea-122115

ABSTRACT

The type test of hearing protectors (HPD) for certification purposes will be conducted in laboratory at room temperature. Optionally, the mechanical durability of HPDs will be tested in cold environment by a drop test. The purpose of this study was to find out the relevance of the drop test, the change of performance in HPD protection, and finally to estimate the possible change of protection efficiency against noise in cold environment. In total, 22 HPDs were selected to the measurements: 18 earmuffs, and 4 earmuffs attached to an industrial helmet. Attenuation of each earmuff cup was measured by applying insertion loss method for the test subjects in cold. The change of attenuation and temperature of cushion ring was followed up to nine minutes using 30-second intervals for sampling. Three HPDs were damaged in the test. The replaceable cushion was broken in two earmuffs and in one helmet-mounted HPD. The replaceable parts were replaced, and the HPD with attachment failure was removed from insertion loss measurement. In nine HPDs the relative change was less than 3 dB, and was at worst 10 dB. This change was typically at low frequencies, 125 Hz at the beginning when cooled HPDs were placed. In various HPDs the time to get the attenuation levelled varied from 1.5 minutes to 8 minutes. The recovery was dependent on the temperature of the cushion ring. In all cases the temperature of the full attenuation was achieved when the cushion ring reached 7 degrees C. This temporary decrease in attenuation will have a minor effect to the protection efficiency, when the HPD is used full time during the whole exposure duration. A typical group of forest workers will have their exposure interrupted. The chain saws have to refuel, and the chain needs to be sharpened about every 40 minutes. During 6 hour daily operational time there will be about 9-10 minute break, long enough to cool the cushion ring back to below zero at -10 degrees C, if the helmet mounted earmuffs are placed in stand-by position. In the worst case this will cause 1.6 dB increase in daily exposure level to noise.


Subject(s)
Cold Temperature , Ear Protective Devices , Equipment Failure Analysis/methods , Finland , Forestry
3.
Noise Health ; 2003 Jul-Sep; 5(20): 63-73
Article in English | IMSEAR | ID: sea-121943

ABSTRACT

Impulse noise causes evidently more severe hearing loss than steady state noise. The additional effect of occupational impulse noise on hearing has been shown to be from 5 to 12 dB at 4 kHz audiometric frequency. Reported cases for compensated for hearing loss are prevalent in occupations where noise is impulsive. For impulse noise two measurement methods have been proposed: the peak level method and energy evaluation method. The applicability of the peak level method is difficult as even the recurrent impulses have different time and frequency characteristics. Various national risk criteria differ from international risk criteria. In France the maximum A-weighted peak level is 135 dB, and in the United Kingdom the C-weighted peak sound pressure is limited to 200 Pa (140 dB). This criterion of unweighted 200 Pa (140 dB) is used in European Union (EU) directive 86/188 and ISO 1999-1990 regardless of the number of impulses. The American Conference of Governmental Industrial Hygienists (ACGIH) has recommended that no exposure in excess of a C-weighted peak sound pressure level of 140 dB should be permitted. At work places these norms do not cause any practical consequences since the impulses seldom exceed 140 dB peak level. In several occupations the impulses are so rapid that they contribute only a minimal amount to the energy content of noise. These impulses can damage the inner ear even though they cause reduced awareness of the hazard of noise. Based to the present knowledge it is evident that there is the inadequacy of the equal energy principle in modelling the risk for hearing loss. The hearing protectors attenuate industrial impulse noise effectively due to the high frequency contents of impulses. Directive regarding the exposure of workers to the risks arising from noise requires that in risk assessment attention should be paid also to impulsive noise. So far there is no valid method to combine steady state and impulse noise. A statistical method for the measurements of industrial impulse noise is needed to get a preferably single number for risk assessment. There is an urgent task to develop risk assessment method and risk criteria for impulsive noise to meet the requirements of the upcoming European Union noise directive.


Subject(s)
Adult , Ear Protective Devices , Hearing Loss, Noise-Induced/epidemiology , Humans , Noise, Occupational/adverse effects , Occupations , Prevalence , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL