Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Braz. j. med. biol. res ; 47(10): 826-833, 10/2014. graf
Article in English | LILACS | ID: lil-722174

ABSTRACT

O-GlcNAcylation is a modification that alters the function of numerous proteins. We hypothesized that augmented O-GlcNAcylation levels enhance myosin light chain kinase (MLCK) and reduce myosin light chain phosphatase (MLCP) activity, leading to increased vascular contractile responsiveness. The vascular responses were measured by isometric force displacement. Thoracic aorta and vascular smooth muscle cells (VSMCs) from rats were incubated with vehicle or with PugNAc, which increases O-GlcNAcylation. In addition, we determined whether proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation. PugNAc enhanced phenylephrine (PE) responses in rat aortas (maximal effect, 14.2±2 vs 7.9±1 mN for vehicle, n=7). Treatment with an MLCP inhibitor (calyculin A) augmented vascular responses to PE (13.4±2 mN) and abolished the differences in PE-response between the groups. The effect of PugNAc was not observed when vessels were preincubated with ML-9, an MLCK inhibitor (7.3±2 vs 7.5±2 mN for vehicle, n=5). Furthermore, our data showed that differences in the PE-induced contractile response between the groups were abolished by the activator of AMP-activated protein kinase (AICAR; 6.1±2 vs 7.4±2 mN for vehicle, n=5). PugNAc increased phosphorylation of myosin phosphatase target subunit 1 (MYPT-1) and protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17), which are involved in RhoA/Rho-kinase-mediated inhibition of myosin phosphatase activity. PugNAc incubation produced a time-dependent increase in vascular phosphorylation of myosin light chain and decreased phosphorylation levels of AMP-activated protein kinase, which decreased the affinity of MLCK for Ca2+/calmodulin. Our data suggest that proteins that play an important role in the regulation of MLCK and MLCP activity are directly affected by O-GlcNAcylation, favoring vascular contraction.


Subject(s)
Animals , Male , Muscle, Smooth, Vascular/physiology , Myosin Light Chains/metabolism , Protein Processing, Post-Translational/physiology , Vasoconstriction/physiology , Aorta, Thoracic , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/pharmacology , Acylation/drug effects , Acylation/physiology , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Azepines/pharmacology , Blotting, Western , Enzyme Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myosin-Light-Chain Kinase/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Oxazoles/pharmacology , Oximes/pharmacology , Phenylcarbamates/pharmacology , Phenylephrine/agonists , Phosphorylation/drug effects , Phosphorylation/physiology , Rats, Wistar , Ribonucleotides/pharmacology , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , beta-N-Acetylhexosaminidases/antagonists & inhibitors
2.
Braz. j. med. biol. res ; 45(5): 392-400, May 2012. ilus
Article in English | LILACS | ID: lil-622764

ABSTRACT

Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.


Subject(s)
Humans , Endothelium, Vascular/physiopathology , Hypertension/physiopathology , Obesity/physiopathology , Hypertension/etiology , Insulin Resistance/physiology , Obesity/complications , Risk Factors , Renin-Angiotensin System/physiology , Sympathetic Nervous System/physiopathology
3.
Braz. j. med. biol. res ; 44(11): 1080-1087, Nov. 2011. ilus
Article in English | LILACS | ID: lil-604269

ABSTRACT

Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.


Subject(s)
Humans , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Cardiovascular Diseases/metabolism , Lung Diseases/metabolism
4.
Braz. j. med. biol. res ; 42(11): 1058-1067, Nov. 2009. ilus
Article in English | LILACS | ID: lil-529110

ABSTRACT

Oscillatory contractile activity is an inherent property of blood vessels. Various cellular mechanisms have been proposed to contribute to oscillatory activity. Mouse small mesenteric arteries display a unique low frequency contractile oscillatory activity (1 cycle every 10-12 min) upon phenylephrine stimulation. Our objective was to identify mechanisms involved in this peculiar oscillatory activity. First-order mesenteric arteries were mounted in tissue baths for isometric force measurement. The oscillatory activity was observed only in vessels with endothelium, but it was not blocked by L-NAME (100 µM) or indomethacin (10 µM), ruling out the participation of nitric oxide and prostacyclin, respectively, in this phenomenon. Oscillatory activity was not observed in vessels contracted with K+ (90 mM) or after stimulation with phenylephrine plus 10 mM K+. Ouabain (1 to 10 µM, an Na+/K+-ATPase inhibitor), but not K+ channel antagonists [tetraethylammonium (100 µM, a nonselective K+ channel blocker), Tram-34 (10 µM, blocker of intermediate conductance K+ channels) or UCL-1684 (0.1 µM, a small conductance K+ channel blocker)], inhibited the oscillatory activity. The contractile activity was also abolished when experiments were performed at 20°C or in K+-free medium. Taken together, these results demonstrate that Na+/K+-ATPase is a potential source of these oscillations. The presence of α-1 and α-2 Na+/K+-ATPase isoforms was confirmed in murine mesenteric arteries by Western blot. Chronic infusion of mice with ouabain did not abolish oscillatory contraction, but up-regulated vascular Na+/K+-ATPase expression and increased blood pressure. Together, these observations suggest that the Na+/K+ pump plays a major role in the oscillatory activity of murine small mesenteric arteries.


Subject(s)
Animals , Male , Mice , Endothelium, Vascular/enzymology , Hypertension/physiopathology , Mesenteric Arteries/enzymology , Sodium-Potassium-Exchanging ATPase/physiology , Vascular Resistance/physiology , Endothelium, Vascular/physiology , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , Mesenteric Arteries/physiology , Ouabain/pharmacology
5.
Braz. j. med. biol. res ; 36(9): 1143-1158, Sept. 2003. ilus
Article in English | LILACS | ID: lil-342861

ABSTRACT

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17ß-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression


Subject(s)
Humans , Cardiovascular System , Endothelium, Vascular , Estrogens , Muscle, Smooth, Vascular , Cardiovascular System , Endothelium, Vascular , Muscle, Smooth, Vascular
6.
Braz. j. med. biol. res ; 35(9): 1061-1068, Sept. 2002. ilus, graf
Article in English | LILACS | ID: lil-325901

ABSTRACT

We determined if the increased vascular responsiveness to endothelin-1 (ET-1) observed in male, but not in female, DOCA-salt rats is associated with differential vascular mRNA expression of ET-1 and/or ET A/ET B receptors or with functional differences in Ca2+ handling mechanisms by vascular myocytes. Uninephrectomized male and female Wistar rats received DOCA and drinking water containing NaCl/KCl. Control rats received vehicle and tap water. Blood pressure and contractile responses of endothelium-denuded aortic rings to agents which induce Ca2+ influx and/or its release from internal stores were measured using standard procedures. Expression of mRNA for ET-1 and ET A/ET B receptors was evaluated by RT-PCR after isolation of total cell RNA from both aorta and mesenteric arteries. Systolic blood pressure was higher in male than in female DOCA rats. Contractions induced by Bay K8644 (which activates Ca2+ influx through voltage-operated L-type channels), and by caffeine, serotonin or ET-1 in Ca2+-free buffer (which reflect Ca2+ release from internal stores) were significantly increased in aortas from male and female DOCA-salt compared to control aortas. DOCA-salt treatment of male, but not female, rats statistically increased vascular mRNA expression of ET-1 and ET B receptors, but decreased the expression of ET A receptors. Molecular up-regulation of vascular ET B receptors, rather than differential changes in smooth muscle Ca2+ handling mechanisms, seems to account for the increased vascular reactivity to ET-1/ET B receptor agonists and higher blood pressure levels observed in male DOCA-salt rats


Subject(s)
Animals , Male , Female , Rats , Desoxycorticosterone , Endothelin-1 , Hypertension , Receptors, Endothelin , Sodium Chloride , Vasoconstriction , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger , Sex Characteristics
7.
Braz. j. med. biol. res ; 30(3): 315-23, Mar. 1997. ilus
Article in English | LILACS | ID: lil-191343

ABSTRACT

Calcium ions (Ca2+) trigger the contraction of vascular myocytes and the level of free intracellular Ca2+ within the myocyte is precisely regulated by sequestration and extrusion mechanisms. Extensive evidence indicates that a defect in the regulation of intracellular Ca2+ plays a role in the augmented vascular reactivity characteristic of clinical and experimental hypertension. For example, arteries from spontaneously hypertensive rats (SHR) have an increased contractile sensitivity to extracellular Ca2+ and intracellular Ca2+ levels are elevated in aortic smooth muscle cells of SHR. We hypothesize that these changes are due to an increase in membrane Ca2+ channel density and possibly function in vascular myocytes from hypertensive animals. Several observations using various experimental approaches support this hypothesis: 1) the contractile activity in response to depolarizing stimuli is increased in arteries from hypertensive animals demonstrating increased voltage-dependent Ca2+ channel activity in hypertension; 2) Ca2+ channel agonists such as Bay K 8644 produce contractions in isolated arterial segments from hypertensive rats and minimal contraction in those from normotensive rats; 3) intracellular Ca2+ concentration is abnormally increased in vascular myocytes from hypertensive animals following treatment with Ca2+ channel agonists and depolarizing interventions, and 4) using the voltage-clamp technique, the inward Ca2+ current in arterial myocytes from hypertensive rats is nearly twice as large as that from myocytes of normotensive rats. We suggest that an alteration in Ca2+ channel function and/or an increase in Ca2+ channel density, resulting from increased channel synthesis or reduced turnover, underlies the increased vascular reactivity characteristic of hypertension.


Subject(s)
Rats , Animals , 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology , Calcium Channels/physiology , Calcium/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/physiology , Vascular Resistance/physiology , Calcium Channel Agonists/pharmacology , Calcium Channels/drug effects , Patch-Clamp Techniques , Rats, Inbred SHR , Rats, Wistar
8.
Braz. j. med. biol. res ; 30(2): 257-67, Feb. 1997. ilus, graf
Article in English | LILACS | ID: lil-188436

ABSTRACT

We tested the hypothesis that cyclopiazonic acid (CPA), an inhibitor of the sarcoplasmic reticulum (SR) Ca2+ -ATPase, increases intracellular Ca2+ concentration ([Ca2+]i) in aortic myocytes and that the increase in [Ca2+]i is higher in aortic cells from deoxycorticosterone acetate (DOCA)-hypertensive rats. Male Sprague-Dawley rats, 250-300 g, underwent uninephrectomy, received a silastic implant containing DOCA (200 mg/kg) and had free access to water supplemented with 1.0 per cent NaCl and 0.2 per cent KCl. Control rats were also uninephrectomized, received normal tap water, but no implant. Intracellular Ca2+ measurements were performed in aortic myocytes isolated from normotensive (Systolic blood pressure = 120 + 3 mmHg; body weight = 478 ñ 7 g, N = 7) and DOCA-hypertensive rats (195 ñ 1O mmHg; 358 ñ 16 g, N = 7). The effects of CPA on resting [Ca2+]i and on caffeine-induced increase in [Ca2+]i after [Ca2+]i depletion and reloading were compared in aortic cells from DOCA and normotensive rats. The phasic increase in [Ca2+]i induced by 20 mM caffeine in Ca2+ -free buffer was significantly higher in DOCA aortic cells (329 ñ 36 nM, N = 5) compared to that in normotensive cells (249 ñ 16 nM, N = 7, P<0.05). CPA (3 muM) inhibited caffeine-induced increases in [Ca2+]i in both groups. When the cells were placed in normal buffer (1.6 mM Ca2+, loading period), after treatment with Ca2+ -free buffer (depletion period), an increase in [Ca2+]i was observed in DOCA aortic cells (45 ñ 11 nM, N = 5) while no changes were observed in normotensive cells. CPA (3 muM) potentiated the increase in [Ca2+]i (l22 ñ 3O nM, N = 5) observed in DOCA cells during the loading period while only a modest increase in [Ca2+]i, (23 ñ 10 nM, N = 5) was observed in normotensive cells. CPA-induced increase in [Ca2+]i did not occur in the absence of extracellular Ca2+ or in the presence of nifedipine. These data show that CPA induces Ca2+ influx in aorta from both normotensive and DOCA-hypertensive rats. However, the increase in [Ca2+]i is higher in DOCA aortic cells possibly due to an impairment in the mechanisms that control [Ca2+]i. The large increase in [Ca2+]i in response to caffeine in DOCA cells probably reflects a greater storage of Ca2+ in the SR.


Subject(s)
Rats , Animals , Male , Caffeine/pharmacology , Calcium/metabolism , Desoxycorticosterone/pharmacology , Enzyme Inhibitors/pharmacology , Hypertension/chemically induced , Indoles/pharmacology , Muscle, Smooth, Vascular/drug effects , Nifedipine/pharmacology , Ion Transport/drug effects , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL