Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 31(3): 391-8, Mar. 1998. ilus, graf
Article in English | LILACS | ID: lil-212275

ABSTRACT

The inferior colliculus is a primary relay for the processing of auditory information in the brainstem. The inferior colluculus is also part of the so-called brain aversion system as animals learn to switch off the electrical stimulation of this structure. The purpose of the present study was to determine whether associative learning occurs between aversion induced by electrical stimulation of the inferior colliculus and visual and auditory warning stimuli. Rats implanted with electrodes into the central nucleus of the inferior colliculus were placed inside an open-field and thresholds for the escape response to electrical stimulation of the inferior colliculus were determined. The rats were then placed inside a shuttle-box and submitted to a two-way avoidance pardigm. Electrical stimulation of the inferior colliculus at the escape threshold (98.12 + 6.15 (A, peak-to-peak) was used as negative reinforcement and light or tone as the warning stimulus. Each session consisted of 50 trials and was divided into two segments of 25 trials in order to determine the learning rate of the animals during the sessions. The rats learned to avoid the inferior colliculus stimulation when light was used as the warning stimulus (13.25 + 0.60 s and 8.63 + 0.93 for lactencies and 12.5 + 2.04 and 19.62 + 1.65 frequencies in the first and second halves of the sessions, respectively, P<0.01 in both cases). No significant changes in latencies (14.75 + 1.63 and 12.75 + 1.44 s) or frequencies of responses (8.75 + 1.20 and 11.25 + 1.13) were seen when tone was used as the warning stimulus (P>0.05 in both cases). Taken together, the present results suggest that rats learn to avoid the inferior colliculus stimulation when light is used as the warning stimulus. However, this learning process does not occur when the neutral stimulus used is an acoustic one. Electrical stimulation of the inferior colliculus may disturb the signal transmission of the stimulus to be conditioned from the inferior colliculus to higher brain structures such as amygdala.


Subject(s)
Animals , Male , Rats , Auditory Perception/physiology , Avoidance Learning/physiology , Inferior Colliculi/physiology , Visual Perception/physiology , Acoustic Stimulation , Brain Mapping , Electric Stimulation , Photic Stimulation , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL