Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e191042, 2022. tab, graf
Article in English | LILACS | ID: biblio-1394057

ABSTRACT

Abstract L-Asparaginase (L-ASNase) is a biopharmaceutical used for acute lymphoblastic leukaemia (ALL) treatment, dramatically increasing the patients' chance of cure. However, its production and distribution in developing countries were disrupted because of its low profitability, which caused great concern among patients. This study evaluates the feasibility of combining fractional precipitation and aqueous two-phase systems (ATPS) to purify L-ASNase from a low-grade product, commercially known as Acrylaway® L. The ATPS purification results were not particularly expressive compared to the two-step purification process composed of ethanol precipitation and gel filtration, which was able to recover the target molecule with a purification factor over 5 fold. Thus, we studied a purification process capable of manufacturing pharmaceutical grade L-ASNase from a commercially available low-grade raw material; however, improvements regarding its throughput must be achieved, and high purity is the first step to apply it as a new biopharmaceutical product. The proposed process could pose as a short-time solution to mitigate its shortage while a cost-effective production plant is being developed.


Subject(s)
Asparaginase/isolation & purification , Fractional Precipitation/methods , Antineoplastic Agents/isolation & purification , Feasibility Studies , Chromatography, Gel , Cost-Benefit Analysis
2.
Braz. arch. biol. technol ; 62: e19180343, 2019. tab, graf
Article in English | LILACS | ID: biblio-1011533

ABSTRACT

Abstract Microalgae are aquatic unicellular microorganisms that can be found both in freshwater and marine systems; are capable of photosynthesis; and can grow as individual cells or associated in chains or small colonies. Microalgae cultivation has gained large momentum among researchers in the past decades due to their ability to produce value metabolites, remarkable photosynthetic efficiency, and versatile nature. The wide technological potential, and thus increasing amount of scattered knowledge, may become the very first barrier that a post graduating student, or any non-specialist reader, will face when introduced to the subject. In this review paper, we access the core aspects of microalgae technology, covering their main characteristics, and comprehensively presenting the main features of their various cultivation modes and biological activity from metabolites.


Subject(s)
Crop Production , Microalgae/growth & development , Phytochemicals , Photosynthetic Reaction Center Complex Proteins
3.
Braz. j. microbiol ; 47(supl.1): 51-63, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-839328

ABSTRACT

ABSTRACT The use of biopharmaceuticals dates from the 19th century and within 5-10 years, up to 50% of all drugs in development will be biopharmaceuticals. In the 1980s, the biopharmaceutical industry experienced a significant growth in the production and approval of recombinant proteins such as interferons (IFN α, β, and γ) and growth hormones. The production of biopharmaceuticals, known as bioprocess, involves a wide range of techniques. In this review, we discuss the technology involved in the bioprocess and describe the available strategies and main advances in microbial fermentation and purification process to obtain biopharmaceuticals.


Subject(s)
Biological Products , Biotechnology , Pharmaceutical Preparations , Microbiological Techniques , Recombinant Proteins , Drug Industry , Fermentation , Biosimilar Pharmaceuticals
4.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469623

ABSTRACT

ABSTRACT The use of biopharmaceuticals dates from the 19th century and within 5-10 years, up to 50% of all drugs in development will be biopharmaceuticals. In the 1980s, the biopharmaceutical industry experienced a significant growth in the production and approval of recombinant proteins such as interferons (IFN , , and ) and growth hormones. The production of biopharmaceuticals, known as bioprocess, involves a wide range of techniques. In this review, we discuss the technology involved in the bioprocess and describe the available strategies and main advances in microbial fermentation and purification process to obtain biopharmaceuticals.

SELECTION OF CITATIONS
SEARCH DETAIL