Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Medicine ; (12): 453-459, 2018.
Article in Chinese | WPRIM | ID: wpr-972433

ABSTRACT

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (M. tuberculosis). WHO estimated that 10.4 million new (incident) TB cases worldwide in year 2016. The increased prevalence of drug resistant strains and side effects associated with the current anti-tubercular drugs make the treatment options more complicated. Hence, there are necessities to identify new drug candidates to fight against various sub-populations of M. tuberculosis with less or no toxicity/side effects and shorter treatment duration. Bacteriocins produced by lactic acid bacteria (LAB) attract attention of researchers because of its 'Generally recognized as safe' status. LAB and its bacteriocins possess an effective antimicrobial activity against various bacteria and fungi. Interestingly bacteriocins such as nisin and lacticin 3147 have shown antimycobacterial activity in vitro. As probiotics, LAB plays a vital role in promoting various health benefits including ability to modulate immune response against various infectious diseases. LAB and its metabolic products activate immune system and thereby limiting the M. tuberculosis pathogenesis. The protein and peptide engineering techniques paved the ways to obtain hybrid bacteriocin derivatives from the known peptide sequence of existing bacteriocin. In this review, we focus on the antimycobacterial property and immunomodulatory role of LAB and its metabolic products. Techniques for large scale synthesis of potential bacteriocin with multifunctional activity and enhanced stability are also discussed.

2.
Electron. j. biotechnol ; 18(6): 433-438, Nov. 2015. ilus, tab
Article in English | LILACS | ID: lil-772287

ABSTRACT

Background Tea (Camellia sinensis), a well-known beverage is consumed frequently worldwide due to its high antioxidant properties. The present study determines the amount of phytochemicals and antioxidant activities among 12 high yielding tea clones cultivated in Iran. Results Among the 12 clones studied, tea clone Iran 100 had the highest total phenolic content and total flavonoid content with values of 8.44 ± 1.03 mg gallic acid equivalents per gram dry weight and 4.50 ± 0.16 mg rutin equivalents per gram dry weight respectively. High performance Liquid Chromatography (HPLC) analysis of phenolics and flavonoids in 12 clones revealed the presence of (+)-catechin, (-)-epicatechin, (-)-epigallocatechin, (-)-epigallocatechin-gallate, (-)-epicatechingallate, gallic acid and caffeine. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay showed the existence of variation in the antioxidant activity ranging from 22.67 to 65.36%. The highest antioxidant activity with IC50 value of 218.24 µg/mL was observed in the leaf extract of the clone Iran 100, while the lowest was found in the clone Iran 482 with IC50 value of 234.44 µg/mL. The antioxidant activity had a positive correlation with total phenolic content, total flavonoid content, (-)-epigallocatechin-gallate, (-)-epicatechingallate and caffeine (0.59 = r = 0.97, P < 0.05). Conclusion From the study it can be concluded that the clone Iran 100 has a superior quality compared to any other clones studied due to occurrence of more phenolic compounds and a greater antioxidant activity. Hence, we recommend the use of tea clone Iran 100 for commercial planting.


Subject(s)
Camellia sinensis/chemistry , Antioxidants/chemistry , Tea , Flavonoids/analysis , Phenolic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL