Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Article in English | IMSEAR | ID: sea-163780

ABSTRACT

Controlling In-vitro drug release profiles for a system of PLGA/PLA microparticles encapsulating a hydrophobic drug. Challenges with the diversity of drug properties, microencapsulation methods, are evaluated with a focus on decreasing the time to lab-scale encapsulation of water-insoluble drug candidates in the drug development stage. The development of biodegradable microparticles systems that combined the beneficial properties of polymeric microparticles for hydrophobic drug delivery were reviewed here. Injectable biodegradable and biocompatible copolymers of lactic and glycolic acid are important advanced delivery system for week too month controlled release of hydrophobic drug (e.g., from biopharmaceutical classification system class IV), which often display poor oral bioavailability. Finally, three important properties affecting release behavior were identified as: polymer hydrophobicity, particle size and particle coating, . This review focuses on the microencapsulation of hydrophobic drugs, describes a variety of techniques for their preparation and analytics.

2.
Article in English | IMSEAR | ID: sea-150758

ABSTRACT

Intranasal drug delivery – which has been practiced for thousands of years, has been given a new lease of life. It is a useful delivery method for drugs that are active in low doses and show no minimal oral bioavailability such as proteins and peptides. One of the reasons for the low degree of absorption of peptides and proteins via the nasal route is rapid movement away from the absorption site in the nasal cavity due to the Mucociliary Clearance mechanism. The nasal route circumvents hepatic first pass elimination associated with the oral delivery: it is easily accessible and suitable for self-medication. The large surface area of the nasal mucosa affords a rapid onset of therapeutic effect, potential for direct-to-central nervous system delivery, no first-pass metabolism, and non-invasiveness; all of which may maximize patient convenience, comfort, and compliance. IN delivery is non-invasive, essentially painless, does not require sterile preparation, and is easily and readily administered by the patient or a physician, e.g., in an emergency setting. Furthermore, the nasal route may offer improved delivery for “non-Lipinski” drugs.

SELECTION OF CITATIONS
SEARCH DETAIL