Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Food Sci. Technol (SBCTA, Impr.) ; 37(spe): 24-27, Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-892228

ABSTRACT

Abstract Aspergillus westerdijkiae is one of the most important spoilage and toxigenic fungi contaminating coffee beans and may produce ochratoxin A (OTA), a mycotoxin that characterize a health risk to the coffee consumers. Biological control strategies can be used for prevention of fungal invasion and decrease mycotoxin exposure. The aims of this study were to evaluate the in vitro effect of three Bacillus sp. biocontrol candidates on A. westerdijkiae mycelial growth, spore counts and OTA production. A green-coffee based medium was inoculated with A. westerdijkiae and Bacillus spp. (B. safensis RF69, B. amyloliquefaciens RP103 and B. subtilis RP242) and after incubation, the fungal growth, sporulation and mycotoxin production was evaluated. Mycelial growth rate was reduced in a range between 76-95% and conidial production was also significantly decreased. All isolates were capable of reducing OTA production in a range between 62-96%. The results showed that the biocontrol candidates may be an effective control method for A. westerdijkiae and OTA in coffee.

2.
Electron. j. biotechnol ; 13(2): 3-4, Mar. 2010. ilus, tab
Article in English | LILACS | ID: lil-567081

ABSTRACT

In recent years the incorporation of probiotic bacteria into foods has received increasing scientific interest for health promotion and disease prevention. The safety and probiotic properties of Zymomonas mobilis CP4 (UFPEDA-202) was studied in a Wistar rat model fed the 10(9) colony forming units (cfu)/mL-1 of the assayed strain for 30 days. No abnormal clinical signs were noted in the group receiving viable cells of Z. mobilis and water (control) during the period of the experiment. There were no significant difference (p > 0.05) in feed intake and weight gain among mice fed the Z. mobilis in comparison to the control group. No bacteria were found in blood, liver and spleen of any animals. Mice receiving Z. mobilis showed significantly differences (p < 0.05) in total and differential leucocytes count, excepting for neutrophils, after the experimental period. Otherwise, it was not found in control group. Histological examination showed that feeding mice with Z. mobilis caused no signs of adverse effects on gut, liver and spleen. From these results, Z. mobilis CP4 (UFEPEDA-202) is likely to be nonpathogenic and safe for consumption, and could have a slight modulating effect on immunological performance in mice.


Subject(s)
Animals , Rats , Probiotics , Zymomonas/physiology , Bacterial Translocation , Food Microbiology , Food Supply , Leukocyte Count , Rats, Wistar , Digestive System/immunology , Digestive System/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL