Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 14(3): 9-9, May 2011. ilus, tab
Article in English | LILACS | ID: lil-602986

ABSTRACT

Leaf rust, caused by Puccinia triticina Eriks. is a common and widespread disease of bread wheat (Triticum aestivum L.), in Argentina. Host resistance is the most economical, effective and ecologically sustainable method of controlling the disease. Gene postulation helps to determine leaf rust resistance genes (Lr genes) that may be present in a large group of wheat germplasm. Additionally presence of Lr genes can be determined using associated molecular markers. The objective of this study was to identify Lr genes that condition leaf rust resistance in 66 wheat cultivars from Argentina. Twenty four differential lines with individual known leaf rust resistance genes were tested with 17 different pathotypes of leaf rust collected from Argentina. Leaf rust infection types produced on seedling plants of the 66 local cultivars were compared with the infection types produced by the same pathotypes on Lr differentials to postulate which seedling leaf rust genes were present. Presence of Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr29, Lr34, Lr35, Lr37, Lr47 and Lr51 was also determined using molecular markers. Eleven different Lr genes were postulated in the material: Lr1, Lr3a, Lr3ka, Lr9, Lr10, Lr16, Lr17, Lr19, Lr24, Lr26, Lr41. Presence of Lr21, Lr25, Lr29, and Lr47 could not be determined with the seventeen pathotypes used in the study because all were avirulent to these genes. Eleven cultivars (16.7 percent) were resistant to all pathotypes used in the study and the remaining 55 (83.3 percent) showed virulent reaction against one or more local pathotypes. Cultivars with seedling resistance gene combinations including Lr16 or single genes Lr47 (detected with molecular marker), Lr19 and Lr41, showed high levels of resistance against all pathotypes or most of them. On the opposite side, cultivars with seedling resistance genes Lr1, Lr3a, Lr3a + Lr24, Lr10, Lr3a + Lr10, Lr3a + Lr10 + Lr24 showed the highest number of virulent reactions against local...


Subject(s)
Genetic Markers , Genes, Plant/genetics , Immunity, Innate/genetics , Pest Control, Biological , Triticum/genetics , Triticum/microbiology , Argentina , Bread , Basidiomycota/physiology , Plant Diseases/genetics , Plant Diseases/immunology , Polymerase Chain Reaction
2.
Electron. j. biotechnol ; 12(1): 4-5, Jan. 2009. ilus, tab
Article in English | LILACS | ID: lil-538044

ABSTRACT

Amylose and amylopectin are the two polysaccharides that constitute starch in bread wheat and the enzyme GBSSI (Granule-bound starch synthase I), also known as waxy protein, is responsible for amylose synthesis in storage tissues. Decrease of the amylose content in starch has been associated with the lack of waxy protein(s). In this work, different sets of PCR markers were used to characterize the genetic variability of waxy loci from 103 Argentinean bread wheat cultivars. For the Wx-A1 locus, Wx-A1a and a novel molecular allele designed Wx-A1g were detected. Wx-B1 locus showed three alleles (Wx-B1a, Wx-B1b, Wx-B1e), and Wx-D1 locus showed only the Wx-D1a allele. Novel single-locus allele specific markers for Wx-A1b, Wx-B1b and Wx-D1b null alleles were also described. To our best knowledge this is the first study focused to characterize the genetic variability for waxy genes in bread wheat cultivars from South America.


Subject(s)
Bread/analysis , Bread , Triticum/genetics , Genetic Variation , Alleles , Argentina , Starch/analysis , Starch/analogs & derivatives
3.
Electron. j. biotechnol ; 9(3)June 2006. ilus
Article in English | LILACS | ID: lil-448821

ABSTRACT

Leaf rust resistance gene Lr47 is located within a interstitial segment of Triticum speltoides Taush. 7S chromosome translocated to the short arm of chromosome 7A of bread wheat. This gene is resistant against currently predominant races of leaf rust from Argentina. The objectives of this study were to identify microsatellites linked to this source of resistance as a potential tool to introgress this source of resistance. Isogenic lines with and without Lr47 developed from 10 cultivars/breeding lines as well as 10 microsatellites previously mapped in 7AS chromosome were used in this study. Microsatellite gwm 60 was the only marker that co-segregated completely linked to Lr47. These data indicate that gwm 60 could be a valuable marker to introgress Lr47 in wheat germplasm.

SELECTION OF CITATIONS
SEARCH DETAIL