Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Biocell ; 30(2): 309-320, ago. 2006. ilus, graf
Article in English | LILACS | ID: lil-491556

ABSTRACT

CAS might have a key role in the apoptosis induced by toxins, acting as anti-apoptotic factor, stimulating the cellular proliferation and the cell contact stabilization. To start to elucidate their role in the brain apoptosis of Bufo arenarum induced by cypermethrin (CY), the expression patterns of CAS and several cell adhesion molecules (CAMs) were established. Bufo arenarum tadpoles of the control and acute bioassay survival at different doses (39, 156, 625 and 2,500 microg CY/L) and times (24, 48, 72 and 96 h) of CY treatment were fixed in Carnoy, embedded in paraffin and sectioned. CAS and CAMs expression was determined by immunofluorescence and immunohistochemistry, respectively. When the bioassay starts, CAS increases suggesting a proliferative or regenerative effect, but decreases when the doses and/or the bbiocide exposure time increases, suggesting compromise of the cellular cycle control and trigger of an apoptotic wave. However, these neurotoxic mechanisms should not involve degradation of N-cadherin and alpha-catenin, in contrast of beta-catenin and axonal N-CAM180, at least in the initial apoptotic phase. Additionally, an adhesion compensatory mechanism by N-CAM180 is observed in the neuron cell body. These results suggest a dual role of CAS in the cellular cycle control during the CY-induced apoptosis: induction of cell proliferation and stabilization of the cell-cell junctions by modulating CAMs expression.


Subject(s)
Animals , Apoptosis , Axons , Bufo arenarum , Brain/cytology , Brain , Cell Adhesion Molecules/metabolism , Cellular Apoptosis Susceptibility Protein/metabolism , Biological Assay , Insecticides/toxicity , Pyrethrins/toxicity , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL