Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Spine Journal ; : 472-482, 2024.
Article in English | WPRIM | ID: wpr-1042250

ABSTRACT

Coronal malalignment (CM) has recently gained focus as a key predictor of functional outcomes in patients with adult spinal deformity (ASD). The kickstand rod technique has been described as a novel technique for CM correction using an accessory rod on the convex side of the deformity. This review aimed to evaluate the surgical technique and outcomes of corrective surgery using this technique. The literature search was conducted on three databases (PubMed, EMBASE, and Scopus). After reviewing the search results, six studies were shortlisted for data extraction and pooled analysis. Weighted means for surgical duration, length of stay, amount of coronal correction, and sagittal parameters were calculated. The studies included in the review were published between 2018 and 2023, with a total sample size of 97 patients. The mean age of the study cohort was 61.1 years, with female preponderance. The mean operative time was 333.6 minutes. The mean correction of CM was 5.1 cm (95% confidence interval [CI], 3.6–6.6), the mean sagittal correction was 5.6 cm (95% CI, 4.1–7.1), and the mean change in lumbar lordosis was 17° (95% CI, 10.4–24.1). Preoperative coronal imbalance and mean correction achieved postoperatively were directly related with age. The reoperation rate was 13.2%. The kickstand rod technique compares favorably with conventional techniques such as asymmetric osteotomies in CM management. This technique provides an additional accessory rod that helps increase construct stiffness. Because of limited data, definitive conclusions cannot be drawn from this review; however, this technique is a valuable tool for a surgeon dealing with ASD.

2.
Article in English | WPRIM | ID: wpr-1042794

ABSTRACT

Clinical outcomes after fixation of distal humerus intraarticular fractures are directly related to the quality of reduction. The use of three-dimensional (3D)-printed fracture models can benefit preoperative planning to ensure good reduction. This review aims to determine if surgery performed with 3D printing assistance are faster and result in fewer complications and improved clinical outcomes than conventional methods. We also outline the benefits and drawbacks of this novel technique in surgical management of distal humerus fractures. Methods: A systematic literature search was carried out in various electronic databases. Search results were screened based on title and abstract. Data from eligible studies were extracted into spreadsheets. Meta-analysis was performed using appropriate computer software. Results: Three randomized controlled trials with 144 cases were included in the final analysis. The 3D-printed group had significantly shorter mean operating time (mean difference, 16.25 minutes; 95% confidence interval [CI], 12.74–19.76 minutes; P<0.001) and mean intraoperative blood loss (30.40 mL; 95% CI, 10.45–60.36 mL; P=0.005) compared with the conventional group. The 3D-printed group also tended to have fewer complications and a better likelihood of good or excellent outcomes as per the Mayo elbow performance score, but this did not reach statistical significance. Conclusions: Three-dimensional-printing-assisted surgery in distal humerus fractures has several benefits in reduced operating time and lower blood loss, indirectly decreasing other complications such as infection and anemia-related issues. Future good-quality studies are required to conclusively demonstrate the benefits of 3D printing in improving clinical outcomes. Level of evidence: I.

SELECTION OF CITATIONS
SEARCH DETAIL