Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 44: 25-32, Mar. 2020. graf, tab, ilus
Article in English | LILACS | ID: biblio-1087637

ABSTRACT

BACKGROUND: Cultivated peanut (Arachis hypogaea. L) represents one of the most important oil crops in the world. Although much effort has been expended to characterize microsatellites or Simple Sequence Repeats (SSRs) in peanut, the quantity and quality of the markers in breeding applications remain limited. Here, genome-wide SSR characterization and marker development were performed using the recently assembled genome of the cultivar Tifrunner. RESULTS: In total, 512,900 microsatellites were identified from 2556.9-Mb genomic sequences. Based on the flanking sequences of the identified microsatellites, 7757 primer pairs (markers) were designed, and further evaluated in the assembled genomic sequences of the tetraploid Arachis cultivars, Tifrunner and Shitouqi, and the diploid ancestral species, A. duranensis and A. ipaensis. In silico PCR analysis showed that the SSR markers had high amplification efficiency and polymorphism in four Arachis genotypes. Notably, nearly 60% of these markers were single-locus SSRs in tetraploid Arachis species, indicating they are more specific in distinguishing the alleles of the A and B sub-genomes of peanut. In addition, two markers closely related with purple testa color and 27 markers near to FAD2 genes were identified, which could be used for breeding varieties with purple testa and high-oleic acid content, respectively. Moreover, the potential application of these SSR markers in tracking introgressions from Arachis wild relatives was discussed. CONCLUSIONS: This study reported the development of genomic SSRs from assembled genomic sequences of the tetraploid Arachis Tifrunner, which will be useful for diversity analysis, genetic mapping and functional genomics studies in peanut


Subject(s)
Arachis/genetics , Breeding/methods , Microsatellite Repeats , Polymorphism, Genetic , Genetic Markers , Polymerase Chain Reaction , Genome , Crops, Agricultural
2.
Electron. j. biotechnol ; 25: 9-12, ene. 2017. tab, ilus
Article in English | LILACS | ID: biblio-1008287

ABSTRACT

Background: Cultivated peanut (Arachis hypogaea L.) is a major oilseed crop worldwide. Fatty acid composition of peanut oil may affect the flavor and shelf life of the resulting food products. Oleic acid and linoleic acid are the major fatty acids of peanut oil. The conversion from oleic acid to linoleic acid is controlled by theΔ12 fatty acid desaturase (FAD) encoded byAhFAD2AandAhFAD2B, two homoeologous genes from A and B subgenomes, respectively. One nucleotide substitution (G:C→A:T) ofAhFAD2Aand an "A" insertion ofAhFAD2Bresulted in high-oleic acid phenotype. Detection ofAhFAD2mutation had been achieved by cleaved amplified polymorphic sequence (CAPS), real-time polymerase chain reaction (qRT-PCR) and allele-specific PCR (AS-PCR). However, a low cost, high throughput and high specific method is still required to detectAhFAD2genotype of large number of seeds. Kompetitive allele specific PCR (KASP) can detect both alleles in a single reaction. The aim of this work is to develop KASP for detectionAhFAD2genotype of large number of breeding materials. Results: Here, we developed a KASP method to detect the genotypes of progenies between high oleic acid peanut and common peanut. Validation was carried out by CAPS analysis. The results from KASP assay and CAPS analysis were consistent. The genotype of 18 out of 179 BC4F2seeds was aabb. Conclusions: Due to high accuracy, time saving, high throughput feature and low cost, KASP is more suitable fordeterminingAhFAD2genotype than other methods.


Subject(s)
Arachis/genetics , High-Throughput Nucleotide Sequencing , Genetic Markers , Polymerase Chain Reaction/methods , Oleic Acid , Fatty Acid Desaturases/genetics , Peanut Oil , Genotype , Mutation
3.
Electron. j. biotechnol ; 15(1): 5-5, Jan. 2012. ilus, tab
Article in English | LILACS | ID: lil-640531

ABSTRACT

Chalcone isomerase (CHI) is the key enzyme that catalyzes chalcone into (2S)-flavanol or (2S)-5-desoxidation flavanol. The full length cDNA (1050 bp) of AhCHI (Arachis hypogaea CHI gene) was cloned by large scale EST sequencing using a peanut immature seed cDNA library. Sequence analysis results indicated that it was a type I CHI gene (with the accession number JN660794). The ORF of AhCHI was 768 bp, encoding a peptide of 255 amino acids with a pI of 5.189. Sequence alignment showed that the coding region of AhCHI gene is highly conserved to compare with CHI genes from other plant species. Peanut cDNA microarray and semi-quantitative RT-PCR analysis indicated that AhCHI was highly expressed in pegs. The expression level in flower and root was higher than the expression level in stem and leaf. AhCHI was expressed in a high level in seeds with a purple seed coat, while its expression was low in seed with white seed coat.


Subject(s)
Arachis/enzymology , Arachis/genetics , Cloning, Molecular , Intramolecular Lyases/genetics , DNA, Complementary/genetics , Gene Expression
4.
J Biosci ; 2011 Jun; 36(2): 223-228
Article in English | IMSEAR | ID: sea-161536

ABSTRACT

Late embryogenesis abundant (LEA) protein family is a large protein family that includes proteins accumulated at late stages of seed development or in vegetative tissues in response to drought, salinity, cold stress and exogenous application of abscisic acid. In order to isolate peanut genes, an expressed sequence tag (EST) sequencing project was carried out using a peanut seed cDNA library. From 6258 ESTs, 19 LEA-encoding genes were identified and could be classified into eight distinct groups. Expression of these genes in seeds at different developmental stages and in various peanut tissues was analysed by semi-quantitative RT-PCR. The results showed that expression levels of LEA genes were generally high in seeds. Some LEA protein genes were expressed at a high level in non-seed tissues such as root, stem, leaf, flower and gynophore. These results provided valuable information for the functional and regulatory studies on peanut LEA genes.

5.
J Biosci ; 2009 Jun; 34(2): 227-238
Article in English | IMSEAR | ID: sea-161293

ABSTRACT

The cultivated peanut is a valuable source of dietary oil and ranks fi fth among the world oil crops. Plant fatty acid biosynthesis is catalysed by type II fatty acid synthase (FAS) in plastids and mitochondria. By constructing a full-length cDNA library derived from immature peanut seeds and homology-based cloning, candidate genes of acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP synthase (I, II, III), β-ketoacyl-ACP reductase, β-hydroxyacyl-ACP dehydrase and enoyl-ACP reductase were isolated. Sequence alignments revealed that primary structures of type II FAS enzymes were highly conserved in higher plants and the catalytic residues were strictly conserved in Escherichia coli and higher plants. Homologue numbers of each type II FAS gene expressing in developing peanut seeds varied from 1 in KASII, KASIII and HD to 5 in ENR. The number of single-nucleotide polymorphisms (SNPs) was quite different in each gene. Peanut type II FAS genes were predicted to target plastids except ACP2 and ACP3. The results suggested that peanut may contain two type II FAS systems in plastids and mitochondria. The type II FAS enzymes in higher plants may have similar functions as those in E. coli.

SELECTION OF CITATIONS
SEARCH DETAIL