Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta cir. bras ; 33(6): 533-541, June 2018. graf
Article in English | LILACS | ID: biblio-949351

ABSTRACT

Abstract Purpose: To investigate the specific molecular mechanisms and effects of curcumin derivative J147 on diabetic peripheral neuropathy (DPN). Methods: We constructed streptozotocin (STZ)-induced DPN rat models to detected mechanical withdrawal threshold (MWT) in vivo using Von Frey filaments. In vitro, we measured cell viability and apoptosis, adenosine 5'-monophosphate-activated protein kinase (AMPK) and transient receptor potential A1 (TRPA1) expression using MTT, flow cytometry, qRT-PCR and western blot. Then, TRPA1 expression level and calcium reaction level were assessed in agonist AICAR treated RSC96cells. Results: The results showed that J147reduced MWT in vivo, increased the mRNA and protein level of AMPK, reduced TRPA1 expression and calcium reaction level in AITCR treated RSC96 cells, and had no obvious effect on cell viability and apoptosis. Besides, AMPK negative regulated TRPA1 expression in RSC96 cells. Conclusions: J147 could ameliorate DPN via negative regulation AMPK on TRPA1 in vivo and in vitro. A curcumin derivative J147might be a new therapeutic potential for the treatment of DPN.


Subject(s)
Animals , Male , Curcumin/analogs & derivatives , Curcumin/pharmacology , Diabetic Neuropathies/drug therapy , AMP-Activated Protein Kinases/drug effects , TRPA1 Cation Channel/drug effects , Time Factors , Cell Survival/drug effects , Cells, Cultured , Blotting, Western , Calcium/analysis , Reproducibility of Results , Apoptosis/drug effects , Streptozocin , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , AMP-Activated Protein Kinases/analysis , Real-Time Polymerase Chain Reaction , TRPA1 Cation Channel/analysis , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL