Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Peking University(Health Sciences) ; (6): 564-569, 2020.
Article in Chinese | WPRIM | ID: wpr-942040

ABSTRACT

OBJECTIVE@#To study the biodegradation properties of multi-laminated small intestinal submucosa (mSIS) through in vitro and in vivo experiments, comparing with Bio-Gide, the most widely used collagen membrane in guided bone regeneration (GBR) technique, for the purpose of providing basis to investigate whether mSIS meets the requirements of GBR in dental clinics.@*METHODS@#The degradation properties were evaluated in vitro and in vivo. In vitro degradation was performed using prepared collagenase solution. Morphology of mSIS and Bio-Gide in degradation solution were observed and the degradation rate was calculated at different time points. In in vivo experiments, nine New Zealand rabbits were used for subcutaneous implantation and were divided into three groups according to observation intervals. Six unconnected subcutaneous pouches were made on the back of each animal and were embedded with mSIS and Bio-Gide respectively. At the end of weeks 4, 8, and 12 after operation, gross observation and HE staining were used to evaluate the degree of degradation and histocompatibility.@*RESULTS@#In vitro degradation experiments showed that mSIS membrane was completely degraded at the end of 12 days, while Bio-Gide was degraded at the end of 7 days. Besides, mSIS maintained its shape for longer time in the degradation solution than Bio-Gide, indicating that mSIS possessed longer degradation time, and had better ability to maintain space than Bio-Gide. In vivo biodegradation indicated that after 4 weeks of implantation, mSIS remained intact. Microscopic observation showed that collagen fibers were continuous with a few inflammatory cells that infiltrated around the membrane. Bio-Gide was basically intact and partially adhered with the surrounding tissues. HE staining showed that collagen fibers were partly fused with surrounding tissues with a small amount of inflammatory cells that infiltrated as well. Eight weeks after operation, mSIS was still intact, and was partly integrated with connective tissues, whereas Bio-Gide membrane was mostly broken and only a few residual fibers could be found under microscope. Only a small amount of mSIS debris could be observed 12 weeks after surgery, and Bio-Gide could hardly be found by naked eye and microscopic observation at the same time.@*CONCLUSION@#In vitro degradation time of mSIS is longer than that of Bio-Gide, and the space-maintenance ability of mSIS is better. The in vivo biodegradation time of subcutaneous implantation of mSIS is about 12 weeks and Bio-Gide is about 8 weeks, both of which possess good biocompatibility.


Subject(s)
Animals , Rabbits , Biocompatible Materials/metabolism , Bone Regeneration , Connective Tissue , Intestinal Mucosa , Intestine, Small , Membranes, Artificial
2.
Journal of Peking University(Health Sciences) ; (6): 887-892, 2019.
Article in Chinese | WPRIM | ID: wpr-941904

ABSTRACT

OBJECTIVE@#To evaluate the barrier effect of an absorbable barrier membrane made by small intestinal submucosa (SIS) compared with Bio-Gide collagen membrane.@*METHODS@#12 healthy New Zealand male white rabbits were randomly assigned. A or B round bone defects with a depth of 2 mm and a diameter of 5 mm or 8 mm was made in each rabbit's mandibular. The following treatments were given respectively: covered with SIS membrane (S), covered with Bio-Gide membrane (G) and blank control (O). Then we got six groups: AS, AG, AO, BS, BG, and BO (n=4). After 4 weeks, the rabbits were sacrificed. The specimens were examined by naked-eye observation, new bone percentage (BV/TV) and bone mineralized density (BMD), which were measured and analyzed by Micro-CT. The data were analyzed with one-way ANOVA.@*RESULTS@#After 4 weeks, Bio-Gide membranes were fused with the surrounding tissue while SIS membranes held the form with no significant degradation. In the AS, BS and AG groups, the absorbable membranes smoothly covered on the new bone. While in the BG group, Bio-Gide membranes collapsed to the center of the bone defects. The 3D reconstruction of Micro-CT showed that a large number of newly formed trabeculae were found in the four groups of AS, BS, AG, and BG. In the central subsidence area of the BG group, the newly formed trabeculae were sparse. However only a small amount of new bone trabecula appeared at the bottom of the defects in groups AO and BO. Micro-CT quantitative results showed that BV/TV (39.10%±0.79%) and BMD [(517.73±11.22) mg/cm3] of AS group were significantly higher than those of AO group [26.67%±1.12%, (319.81±8.00) mg/cm3] (P<0.05), and there was no significant difference between AS group and AG group [38.15%±0.91%, (518.65±7.48) mg/cm3] (P>0.05). BV/TV (34.90%±1.35%) and BMD [(409.09±8.14) mg/cm3] of BS group were significantly higher than those of BO group [23.63%±2.07%, (171.00±16.24) mg/cm3] (P < 0.05). Meanwhile, there was no significant difference between BS and BG groups [33.40%±1.06%, (412.70±8.6) mg/cm3] (P>0.05). HE staining analysis revealed that significant bone formation was achieved in the AS, AG, BS and BG groups, and trabecular bone of AS and AG groups were thicker and denser. In AO and BO group, there were scattered new bone tissues in edges of host bone, and no coarse trabecular bone formed.@*CONCLUSION@#In the early healing of two sizes bone defects in rabbit mandibular, SIS membrane and Bio-Gide membrane have a similar barrier effect in guided bone regeneration. And SIS membrane's ability to maintain space for bone regeneration seems to be better.


Subject(s)
Animals , Male , Rabbits , Absorbable Implants , Bone Regeneration , Mandible , Osteogenesis , Random Allocation , Swine , Wound Healing , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL