Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 801-808, 2023.
Article in English | WPRIM | ID: wpr-1010274

ABSTRACT

OBJECTIVE@#To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro.@*METHODS@#MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.@*RESULTS@#HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation.@*CONCLUSION@#Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.


Subject(s)
Emodin/pharmacology , AMP-Activated Protein Kinases/metabolism , Podocytes , Caspase 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Apoptosis , Sirolimus/pharmacology , Glucose/metabolism , Autophagy
2.
Chinese Journal of Traumatology ; (6): 98-103, 2008.
Article in English | WPRIM | ID: wpr-236724

ABSTRACT

<p><b>OBJECTIVE</b>To observe the expression and distribution of adult rat axon guidance cues Netrin-1 and Slit2 at different time points after spinal cord injury and to investigate the guidance mechanism of regenerated axons.</p><p><b>METHODS</b>Twenty adult Sprague Dawley (SD) rats were divided randomly into five groups with 4 in each. Four groups of them were used to make Allen's spinal cord punch models and we took materials randomly from one of them on the 2nd, 4th, 7th and 14th day respectively after operation. The left one group was taken as the control group. Immunofluorescence laser confocal scan was used to examine the co-expression and localization of Netrin-1 and Slit2 proteins in the injured site of the spinal cord.</p><p><b>RESULTS</b>Within two weeks after SCI, the expression of Netrin-1 and Slit2 proteins increased temporarily and there was co-expression of them on the neuron plasma membrane.</p><p><b>CONCLUSIONS</b>Synchronous high expression and co-expression of axon attractant Netrin-1 and repellent Slit2 are found in the adult rat injured spinal cord in the damaged local and vicinity parts, and probably, they act as the key regulators of axon guidance regeneration.</p>


Subject(s)
Animals , Female , Male , Rats , Intercellular Signaling Peptides and Proteins , Microscopy, Confocal , Nerve Growth Factors , Nerve Regeneration , Physiology , Nerve Tissue Proteins , Netrin-1 , Random Allocation , Rats, Sprague-Dawley , Spinal Cord Injuries , Metabolism , Tumor Suppressor Proteins
SELECTION OF CITATIONS
SEARCH DETAIL