Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 720-729, 2017.
Article in Chinese | WPRIM | ID: wpr-242235

ABSTRACT

Microbial fuel cells (MFCs) is a highly promising bioelectrochemical technology and uses microorganisms as catalyst to convert chemical energy directly to electrical energy. Microorganisms in the anodic chamber of MFC oxidize the substrate and generate electrons. The electrons are absorbed by the anode and transported through an external circuit to the cathode for corresponding reduction. The flow of electrons is measured as current. This current is a linear measure of the activity of microorganisms. If a toxic event occurs, microbial activity will change, most likely decrease. Hence, fewer electrons are transported and current decreases as well. In this way, a microbial fuel cell-based biosensor provides a direct measure to detect toxicity for samples. This paper introduces the detection of antibiotics, heavy metals, organic pollutants and acid in MFCs. The existing problems and future application of MFCs are also analyzed.

2.
Chinese Journal of Biotechnology ; (12): 271-283, 2016.
Article in Chinese | WPRIM | ID: wpr-337416

ABSTRACT

Anode is an important part of microbial fuel cell, its performance significantly affects the electricity generation of microbial fuel cells (MFCs). Nanomaterials have excellent properties, such as good conductivity and large surface area. Therefore, nanomaterials modified anode can effectively reduce the electrode resistance, increase the amount of microbial adhesion and improve the electricity generation of MFCs. In this paper, we introduced various nanomaterials modified anodes and summarized their effects on the output performance of MFCs. Finally, the prospect of modifying nanomaterials and technologies were discussed.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes , Nanostructures
SELECTION OF CITATIONS
SEARCH DETAIL