Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Protein & Cell ; (12): 990-996, 2011.
Article in English | WPRIM | ID: wpr-757320

ABSTRACT

Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release (IICR) via IP(3)R(1), but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca(2+) image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP(3)Rs (IICR) and the IICR were markedly decreased in ERp44 overexpressed Hela cells. The inhibitory effect of C160S/C212S but not C29S/T396A/ΔT(331-377) mutants of ERp44 on IICR were significantly decreased compared with ERp44. However, the binding capacity of ERp44 to L3V domain of IP(3)R(1) (1L3V) was enhanced by ERp44 C160S/C212S mutation. Taken together, these results suggest that the mutants of ERp44, C160/C212, can more tightly bind to IP(3)R(1) but exhibit a weak inhibition of IP(3)R(1) channel activity in Hela cells.


Subject(s)
Humans , Adenosine Triphosphate , Pharmacology , Amino Acid Substitution , Biological Transport , Physiology , Blotting, Western , Calcium , Metabolism , Calcium Signaling , Physiology , HeLa Cells , Immunoprecipitation , Inositol 1,4,5-Trisphosphate , Metabolism , Inositol 1,4,5-Trisphosphate Receptors , Physiology , Membrane Potentials , Physiology , Membrane Proteins , Genetics , Metabolism , Microscopy, Confocal , Molecular Chaperones , Genetics , Metabolism , Mutation , Plasmids , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL