Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Journal of Southern Medical University ; (12): 742-746, 2006.
Article in Chinese | WPRIM | ID: wpr-282928

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of cell surface sialic acid and its linkage on the cell-cell and cell-matrix adhesion of mammary carcinoma cells MD-MB-435.</p><p><b>METHODS</b>MD-MB-435 cells were sense-transfected with ST6Gal I cDNA or antisense-transfected with part of the ST6Gal I sequence inserted in pcDNA 3.1 vector, with mock transfection with pcDNA3.1 vector as the control. The cell surface alpha2, 6-linked sialylation was determined by fluorescence-activated cell sorting (FACS) using lectin SNA (Sambucus nigra agglutinin specific to alpha2, 6-linked sialic acid on N-linked glycoprotein). A significantly increased alpha2, 6-sialylation subclone in sense-transfectants and a decreased alpha2, 6-sialylation subclone in antisense-transfectants were selected for further examination of cell-cell and cell-matrix (collagen IV) adhesion. The transfectants were also treated with sialidase to compare the capacity of cell adhesion affected by cell surface sialylation.</p><p><b>RESULTS</b>Sense-transfection subclone showed a reduced cell-cell aggregation but enhanced cell-matrix adhesion. In contrast, the antisense-transfection subclone exhibited increased cell-cell aggregation and decreased cell-matrix adhesion. After treatment with sialidase, the cell-matrix adhesion of all the transfectants and the parental MDA-MB-435 cells were significantly reduced to the level of 31%-57% of untreated cells.</p><p><b>CONCLUSION</b>Cell surface sialic acid and alpha2, 6-linked sialylation play an important role in cell-cell and cell-matrix adhesion of mammary carcinoma cell MDA-MB-435.</p>


Subject(s)
Humans , Antigens, CD , Genetics , Metabolism , Breast Neoplasms , Genetics , Metabolism , Pathology , Cell Adhesion , Cell Line, Tumor , Cell Membrane , Metabolism , Cell-Matrix Junctions , Metabolism , Collagen Type IV , Metabolism , Extracellular Matrix , Metabolism , N-Acetylneuraminic Acid , Metabolism , Sialyltransferases , Genetics , Metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL