Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 38: 49-57, Mar. 2019. tab, graf, ilus
Article in English | LILACS | ID: biblio-1051388

ABSTRACT

BACKGROUND: This paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5. RESULTS: Realgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the highenergy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption. CONCLUSION: Emphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings


Subject(s)
Arsenic/metabolism , Sulfides/metabolism , Acidithiobacillus/metabolism , Mining/methods , Arsenic/chemistry , Solubility , Sulfides/chemistry , Temperature , Nanotechnology , Nanoparticles/chemistry , Extremophiles
2.
Biol. Res ; 50: 17, 2017. tab, graf
Article in English | LILACS | ID: biblio-838975

ABSTRACT

Realgar is a naturally occurring arsenic sulfide (or Xionghuang, in Chinese). It contains over 90% tetra-arsenic tetrasulfide (As4S4). Currently, realgar has been confirmed the antitumor activities, both in vitro and in vivo, of realgar extracted using Acidithiobacillus ferrooxidans (A. ferrooxidans). Bioleaching, a new technology to greatly improve the use rate of arsenic extraction from realgar using bacteria, is a novel methodology that addressed a limitation of the traditional method for realgar preparation. The present systematic review reports on the research progress in realgar bioleaching and its antitumor mechanism as an anticancer agent. A total of 93 research articles that report on the biological activity of extracts from realgar using bacteria and its preparation were presented in this review. The realgar bioleaching solution (RBS) works by inducing apoptosis when it is used to treat tumor cells in vitro and in vivo. When it is used to treat animal model organisms in vivo, such as mice and Caenorhabditis elegans, tumor tissues grew more slowly, with mass necrosis. Meanwhile, the agent also showed obvious inhibition of tumor cell growth. Bioleaching technology greatly improves the utilization of realgar and is a novel methodology to improve the traditional method.


Subject(s)
Humans , Arsenicals/pharmacology , Sulfides/pharmacology , Acidithiobacillus thiooxidans/metabolism , Antineoplastic Agents/pharmacology , Arsenicals/metabolism , Arsenicals/chemistry , Sulfides/metabolism , Sulfides/chemistry , Apoptosis/drug effects , K562 Cells , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Synergism , Toxicological Phenomena , Antineoplastic Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL